Adrenergic Regulation of the Functioning of the Cardiovascular System under Hypothermic Conditions

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Regulation of the function of the cardiovascular system under and after hypothermia is one of important and relevant tasks in biomedical research. It is because of both – serious complications of hypothermia and the potential outcome benefits with hypothermia used for medicinal purposes. Adrenergic regulation is central for the normal function of the cardiovascular system. There are three types of adrenergic receptors known as α1, α2 and β, the expression levels of which are different in the myocardium and blood vessels. Activation of each of the adrenergic receptor subtypes can cause differently directed effects, which are significantly modified under the conditions of low temperature. The effectiveness of β-adrenergic stimulation decreases and β-adrenergic stimulation can even act like hypothermia, leading to impairment of myocardial function. The severity of the effects of α1 adrenergic agonists both on myocardial tissue and in blood vessels is also diminished, however, sensitivity to stimulation of α1a receptors in blood vessels may increase. The activation of α1 adrenergic receptors mediates protective effect in the heart. The activation of α2 adrenergic receptors has a fairly wide range of protective effects on the heart. However, there is now increasing evidence of direct inotropic and vascular effects mediated by this type of receptor. There is also some evidence that these effects become more pronounced under hypothermia. This review examines the current state of research on the effects of stimulation of certain types of adrenergic receptors under normal and hypothermic conditions, analyzes the mechanisms of physiological action and prospects for their further research.

Sobre autores

M. Galimova

Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences

Email: mgalimova@mail.ru
Pushchino, Russia

A. Averin

Institute of Cell Biophysics, Russian Academy of Sciences

Pushchino, Russia

Bibliografia

  1. Tsai M.-S., Huang C.-H., Yu P.-H., Tsai C.-Y., Chen H.-W., Cheng H.-J., Chang W.-T., Wang T.-D., and Chen W.-J. Prolonged cooling duration mitigates myocardial and cerebral damage in cardiac arrest. Am. J. Emerg. Med., 33 (10), 1374–1381 (2015). doi: 10.1016/j.ajem.2015.07.030
  2. Oumeiri B. E., Louagie Y., and Buche M. Reoperation for ascending aorta false aneurysm using deep hypothermia and circulatory arrest. Interact. Cardiovasc. Thorac Surg., 12 (4), 605–608 (2011). doi: 10.1510/icvts.2010.262378
  3. Mauduit M., Anselmi A., Soulami R. B., Tomasi J., Flecher E., Langanay T., Corbineau H., Rouze S., and Verhoye J.-P. Early and long-term results of hypothermic circulatory arrest in aortic surgery: a 20-year singlecentre experience. J. Cardiovasc. Med. (Hagerstown), 22 (7), 572–578 (2021). doi: 10.2459/JCM.0000000000001152
  4. Tomita A., Fujimoto T., Takada S., and Hayashi Y. Anesthetic management of a patient with severe aortic regurgitation undergoing reoperation for ascending aorta false aneurysm using hypothermia: prevention of ventricular fibrillation by nifekalant. JA Clin. Rep., 7 (1), 43 (2021). doi: 10.1186/s40981-021-00446-8
  5. Bjertnas L. J., Hindberg K., Nasheim T. O., Suborov E. V., Reierth E., Kirov M. Y., Lebedinskii K. M., and Tveita T. Rewarming From Hypothermic Cardiac Arrest Applying Extracorporeal Life Support: A Systematic Review and Meta-Analysis. Front. Med. (Lausanne), 8, 641633 (2021). doi: 10.3389/fmed.2021.641633
  6. Mackiewicz U. and Lewartowski B. Temperature dependent contribution of Ca2+ transporters to relaxation in cardiac myocytes: important role of sarcolemmal Ca2+-ATPase. J. Physiol. Pharmacol., 57, 3–15 (2006). PMID: 16601311
  7. Shutt R. H. and Howlett S. E. Hypothermia increases the gain of excitation-contraction coupling in guinea pig ventricular myocytes. Am. J. Physiol. Cell Physiol., 295 (3), C692–C700 (2008). doi: 10.1152/ajpcell.00287.2008
  8. Sprung J., Stowe D. F., Kampine J. P., and Bosnjak Z. J. Hypothermia modifies anesthetic effect on contractile force and Ca2+ transients in cardiac Purkinje fibers. Am. J. Physiol., 267 (2), H725–H733 (1994). doi: 10.1152/ajpheart.1994.267.2.H725
  9. Shattock M. J. and Bers D. M. Inotropic response to hypothermia and the temperature-dependence of ryanodine action in isolated rabbit and rat ventricular muscle: implications for excitation-contraction coupling. Circ. Res., 61 (6), 761–771 (1987). doi: 10.1161/01.res.61.6.761
  10. Liu B., Wang L. C., and Belke D. D. Effect of low temperature on the cytosolic free Ca2+ in rat ventricular myocytes. Cell Calcium, 12 (1), 11 (1991). doi: 10.1016/0143-4160(91)90080-x
  11. Schaible N., Han Y. S., Tveita T., and Sieck G. C. Role of superoxide ion formation in hypothermia/rewarming induced contractile dysfunction in cardiomyocytes. Cryobiology, 81, 57–64 (2018). doi: 10.1016/j.cryobiol.2018.02.010
  12. Han Y.-S., Tveita T., Kondratiev T. V., Prakash Y. S., and Sieck G. C. Changes in cardiovascular beta-adrenoceptor responses during hypothermia. Cryobiology, 57 (3), 246–250 (2008). doi: 10.1016/j.cryobiol.2008.09.006
  13. Schaible N., Han Y. S., Hoang T., Arteaga G., TveitaT., and Sieck G. Hypothermia/rewarming disrupts excitation-contraction coupling in cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol., 310 (11), H1533–H1540 (2016). doi: 10.1152/ajpheart.00840.2015
  14. Miller V. M., Miller W. L., and South F. E. Vascular smooth muscle responsiveness in a hibernator: effects of season and temperature. Am. J. Physiol., 250 (1), R77–R82 (1986). doi: 10.1152/ajpregu.1986.250.1.R77
  15. Mustafa S. Hypothermia induces opposite response in vascular and non-vascular smooth muscles. J. Therm. Biol., 95, 102818 (2021). doi: 10.1016/j.jtherbio.2020.102818
  16. Mustafa S. and Thulesius O. Cooling is a potent vasodilator of deep vessels in the rat. Can. J. Physiol. Pharmacol., 79, 899 (2001). PMID: 11760091
  17. Herrera B., Eisenberg G., Holberndt O., Desco M. M., Rabano A., Garcia-Barreno P., and Del Canizo J. F. Paradoxical effects of temperature on vascular tone. Cryobiology, 41 (1), 43–50 (2000). doi: 10.1006/cryo.2000.2263
  18. Dahdah N. S., Russo P., and Wagerle L. C. Phosphorylation in coronary artery cold-induced contraction in the newborn lamb. Cryobiology, 42 (1), 40–48 (2001). doi: 10.1006/cryo.2001.2299
  19. Herrera B., Desco M. M., Eisenberg G., Garcia-Barreno P., and Del Canizo J. F. Role of elastic fibers in cooling-induced relaxation. Cryobiology, 44 (1), 54–61 (2002). doi: 10.1016/S0011-2240(02)00004-4
  20. Matuškova L. and Javorka M. Adrenergic receptors gene polymorphisms and autonomic nervous control of heart and vascular tone. Physiol. Res., 70 (1), S495–S510 (2021). doi: 10.33549/physiolres.934799
  21. Alekseev A. E., Park S., Pimenov O. Yu., Reyes S., and Terzic A. Sarcolemmal α2-adrenoceptors in feedback control of myocardial response to sympathetic challenge. Pharmacol. Ther., 197, 179–190 (2019). doi: 10.1016/j.pharmthera.2019.01.007
  22. Flordellis C., Manolis A., Scheinin M., and Paris H. Clinical and pharmacological significance of alpha2adrenoceptor polymorphisms in cardiovascular diseases. Int. J. Cardiol., 97 (3), 367–372 (2004). doi: 10.1016/j.ijcard.2003.10.014
  23. Michel L. Y. M., Farah C., and Balligand J.-L. The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues. Cells, 9 (12), 2584 (2020). doi: 10.3390/cells9122584
  24. Motiejunaite J., Amar L., and Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann. Endocrinol. (Paris), 82 (3–4), 193–197 (2021). doi: 10.1016/j.ando.2020.03.012
  25. O'Connell T. D., Jensen B. C., Baker A. J., and Simpson P. C. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol. Rev., 66 (1), 308–333 (2014). doi: 10.1124/pr.112.007203
  26. Varma D. R. and Deng X. F. Cardiovascular alpha1-adrenoceptor subtypes: functions and signaling. Can. J. Physiol. Pharmacol., 78, 267 (2000). PMID: 10772055
  27. Nozdrachyov A. D., Tsirkin V. I., and Korotaeva Y. V. The role of alpha1-adrenoceptors for activity of the heart in humans and animals. Part 1 (Review). Ross. Fiziol. Zh. im. I.M. Sechenova, 102 (2), 130–145 (2016). PMID: 29671479
  28. Averin A. S., Andreeva L. A., Popova S. S., Kosarsky L. S., Anufriev A. I., Nenov M. N., and Nakipova O. V. α1Adrenergic receptor regulates papillary muscle and aortic segment contractile function via modulation of store-operated Ca2+ entry in long-tailed ground squirrels Urocitellus undulates. J. Comp. Physiol. B, (2021). doi: 10.1007/s00360-021-01394-6
  29. Chu C., Thai K., Park K. W., Wang P., Makwana O., Lovett D. H., Simpson P. C., and Baker A. J. Intraventricular and interventricular cellular heterogeneity of inotropic responses to α(1)-adrenergic stimulation. Am. J. Physiol. Heart Circ. Physiol., 304 (7), H946–H953 (2013). doi: 10.1152/ajpheart.00822.2012
  30. Fedida D. and Bouchard R. A. Mechanisms for the positive inotropic effect of alpha 1-adrenoceptor stimulation in rat cardiac myocytes. Circ. Res., 71 (3), 673–688 (1992). doi: 10.1161/01.res.71.3.673.
  31. Nishimaru K., Kobayashi M., Matsuda T., Tanaka Y., Tanaka H., and Shigenobu K. Alpha-Adrenoceptor stimulation-mediated negative inotropism and enhanced Na+/Ca2+ exchange in mouse ventricle. Am. J. Physiol. Heart Circ. Physiol., 280 (1), H132–H141 (2001). doi: 10.1152/ajpheart.2001.280.1.H132
  32. Michel M. C., Hanft G., and Gross G. Functional studies on alpha 1-adrenoceptor subtypes mediating inotropic effects in rat right ventricle. Br. J. Pharmacol., 111, 539 (1994). doi: 10.1111/j.1476-5381.1994.tb14771.x
  33. Nagashima M., Hattori Y., Tohse N., and Kanno M. Alpha 1-adrenoceptor subtype involved in the positive and negative inotropic responses to phenylephrine in rat papillary muscle. Gen. Pharmacol., 28 (5), 721–725 (1997). doi: 10.1016/s0306-3623(96)00356-4
  34. Cowley P. M., Wang G., Chang A. N., Makwana O., Swigart P. M., Lovett D. H., Stull J. T., Simpson P. C., and Baker A. J. The α1A-adrenergic receptor subtype mediates increased contraction of failing right ventricular myocardium. Am. J. Physiol. Heart Circ. Physiol., 309 (5), H888–H896 (2015). doi: 10.1152/ajpheart.00042.2015
  35. Janssen P. M. L., Canan B. D., Kilic A., Whitson B. A., and Baker A. J. Human Myocardium has a robust α1asubtype adrenergic receptor inotropic response. J. Cardiovasc. Pharmacol., 72 (3), 136–142 (2018). doi: 10.1097/FJC.0000000000000604
  36. Thomas R. C., Cowley P. M., Singh A., Myagmar B.-E., Swigart P. M., Baker A. J., and Simpson P. C. The alpha1a adrenergic receptor in the rabbit heart. PLoS One, 11 (6), e0155238 (2016). doi: 10.1371/journal.pone.0155238
  37. Zhang S., Takahashi R., Yamashita N., Teraoka H., and Kitazawa T. Αlpha1B-adrenoceptor-mediated positive inotropic and positive chronotropic actions in the mouse atrium. Eur. J. Pharmacol., 839, 82–88 (2018). doi: 10.1016/j.ejphar.2018.08.038
  38. Turnbull L., McCloskey D. T., O'Connell T. D., Simpson P. C., and Baker A. J. Alpha 1-adrenergic receptor responses in alpha 1AB-AR knockout mouse hearts suggest the presence of alpha 1D-AR. Am. J. Physiol. Heart Circ. Physiol., 284 (4), H1104–H1109 (2003). doi: 10.1152/ajpheart.00441.2002
  39. Chen L., Wang W., Peng X., Liu L., Zhang A., Li X., Ma K., and Wang L. α1-Adrenoceptors activate the NLRP3 inflammasome through downregulation of Kir2.1 in cardiac inflammation. Exp. Physiol., 107 (6), 589–600 (2022). doi: 10.1113/EP090243
  40. Xin J.-Z., Wu J.-M., Hu G.-M., Gu H.-J., Feng Y.-N., Wang S.-X., Cong W.-W., Li M.-Zh., Xu W.-L., Song Y., Xiao H., Zhang Y.-Y., and Wang L. α1-AR overactivation induces cardiac inflammation through NLRP3 inflammasome activation. Acta Pharmacol. Sin., 41 (3), 311–318 (2020). doi: 10.1038/s41401-019-0305-x
  41. Zhang J., Simpson P. C., and Jensen B. C. Cardiac a1A-adrenergic receptors: emerging protective roles in cardiovascular diseases. Am. J. Physiol. Heart Circ. Physiol., 320 (2), H725–H733 (2021). doi: 10.1152/ajpheart.00621.2020
  42. Docherty J. R. The pharmacology of α1-adrenoceptor subtypes. Eur. J. Pharmacol., 855, 305–320 (2019). doi: 10.1016/j.ejphar.2019.04.047
  43. Yamaki F., Zhang X., Shioda N., Yoshioka K., Obara K., and Tanaka Y. Normetadrenaline and metadrenaline induce rat thoracic aorta/prostate contraction via α1D/1A-adrenoceptor stimulation. Eur. J. Pharmacol., 877, 173079 (2020). doi: 10.1016/j.ejphar.2020.173079
  44. Arce C., Vicente D., Segura V., Flacco N., Monto F., Almenar L., Aguero J., Rueda J., Jimenez-Altayo F., Vila E., Noguera M. A., D'Ocon P., and Ivorra M. D. Activation of α1A-adrenoceptors desensitizes the rat aorta response to phenylephrine through a neuronal NOS pathway, a mechanism lost with ageing. Br. J. Pharmacol., 174 (13), 2015–2030 (2017). doi: 10.1111/bph.13800
  45. Omar S. A., Hammad D., and Varma S. Reduced beta adrenergic responsiveness in isolated rabbit atria during hypothermia. Indian J. Physiol. Pharmacol., 23 (3), 199–203 (1979). PMID: 230156
  46. Mori K., Hashimoto H., and Hasegawa H. Influence of temperature on the sensitivity of the adrenoceptors in the isolated atria of guinea pigs and rats. Eur. J. Pharmacol., 55 (2), 189–197 (1979). doi: 10.1016/0014-2999(79)90391-1
  47. Nishimaru K., Sekine T., Tanaka Y., Tanaka H., and Shigenobu K. Temperature sensitive effects of alphaadrenergic stimulation in mouse ventricular myocardial. Res. Commun. Mol. Pathol. Pharmacol., 104 (2), 173–180 (1999). PMID: 10634310
  48. Endoh M., Hillen B., and Schumann H. J. Influence of temperature and frequency on the positive inotropic action of phenylephrine in the isolated rabbit papillary muscle. Arch. Int. Pharmacodyn. Ther., 228 (2), 213–221 (1977). PMID: 921412
  49. Ishida H., Saito S.-Y., and Ishikawa T. α1A-Adrenoceptors, but not α1B- or α1D-adrenoceptors, contribute to enhanced contractile response to phenylephrine in cooling conditions in the rat tail artery. Eur. J. Pharmacol., 838, 120–128 (2018). doi: 10.1016/j.ejphar.2018.09.004
  50. Suzuki F., Morishima S., Tanaka T., and Muramatsu I. Snapin, a new regulator of receptor signaling, augments alpha1A-adrenoceptor-operated calcium influx through TRPC6. J. Biol. Chem., 282 (4), 29563–29573 (2007). doi: 10.1074/jbc.M702063200
  51. Hussain M. B. and Marshall I. Characterization of alpha1adrenoceptor subtypes mediating contractions to phenylephrine in rat thoracic aorta, mesenteric artery and pulmonary artery. Br. J. Pharmacol., 122 (5), 849–858 (1997). doi: 10.1038/sj.bjp.0701461
  52. Chung J.-Y., Kim J.-E., Yoon H.-J., Song S.-Y., Kim S.-O., and Roh W.-S. Moderate hypothermia attenuates α(1)-adrenoceptor-mediated contraction in isolated rat aorta: the role of the endothelium. Cryobiology, 65 (1), 33–40 (2012). doi: 10.1016/j.cryobiol.2012.03.009
  53. Cho J. W., Lee C. H., Jang J. S., Kwon O. C., Roh W. S., and Kim J. E. Moderate and deep hypothermia produces hyporesposiveness to phenylephrine in isolated rat aorta. Korean J. Thorac Cardiovasc. Surg., 46 (6), 402–412 (2013). doi: 10.5090/kjtcs.2013.46.6.402
  54. Lagneau F., Kirstetter P., and Bernard C. Effect of mild hypothermia on the vascular actions of phenylephrine in rat aortic rings. Br. J. Anaesth., 82 (6), 938–940 (1999). doi: 10.1093/bja/82.6.938
  55. Lee S. H., Ok S.-H., Subbarao R. B., Kim J.-Y., Bae S. I., Hwang Y., Tak S., and Sohn J.-T. Nitric oxidemediated inhibition of phenylephrine-induced contraction in response to hypothermia is partially modulated by endothelial Rho-kinase. Int. J. Med. Sci., 17 (1), 21–32 (2020). doi: 10.7150/ijms.39074
  56. Ibacache M., Sanchez G., Pedrozo Z., Galvez F., Humeres C., Echevarria G., Duaso J., Hassi M., Garcia L., Diaz-Araya G., and Lavandero S. Dexmedetomidine preconditioning activates pro-survival kinases and attenuates regional ischemia/reperfusion injury in rat heart. Biochim. Biophys. Acta, 1822 (4), 537–545 (2012). doi: 10.1016/j.bbadis.2011.12.013
  57. Brede M., Nagy G., Philipp M., Sorensen J. B., Lohse M. J., and Hein L. Differential control of adrenal and sympathetic catecholamine release by alpha 2-adrenoceptor subtypes. Mol. Endocrinol., 17 (8), 1640–1646 (2003). doi: 10.1210/me.2003-0035
  58. Moura E., Afonso J., Hein L., and Vieira-Coelho M. A. Alpha2-adrenoceptor subtypes involved in the regulation of catecholamine release from the adrenal medulla of mice. Br. J. Pharmacol., 149 (8), 1049–1058 (2006). doi: 10.1038/sj.bjp.0706950
  59. Dukes I. D. and Vaughan Williams E. M. Effects of selective alpha 1-, alpha 2-, beta 1-and beta 2-adrenoceptor stimulation on potentials and contractions in the rabbit heart. J. Physiol., 355, 523–546 (1984). doi: 10.1113/jphysiol.1984.sp015436
  60. Flacke W. E., Flacke J. W., Blow K. D., McIntee D. F., and Bloor B. C. Effect of dexmedetomidine, an alpha 2-adrenergic agonist, in the isolated heart. J. Cardiothorac. Vasc. Anesth., 6 (4), 418–423 (1992). doi: 10.1016/1053-0770(92)90006-s
  61. Housmans P. R. Effects of dexmedetomidine on contractility, relaxation, and intracellular calcium transients of isolated ventricular myocardium. Anesthesiology, 73 (5), 919–922 (1990). doi: 10.1097/00000542-199011000-00020
  62. Evdokimovskii E. V., Jeon R., Park S., Pimenov O. Y., and Alekseev A. E. Role of α2-adrenoceptor subtypes in suppression of L-type Ca2+ current in mouse cardiac myocytes. Int. J. Mol. Sci., 22 (8), 4135 (2021). doi: 10.3390/ijms22084135
  63. Hongo M., Fujisawa S., Adachi T., Shimbo T., Shibata S., Ohba T., and Ono K. Age-related effects of dexmedetomidine on myocardial contraction and coronary circulation in isolated guinea pig hearts. J. Pharmacol. Sci., 131 (2), 118–125 (2016). doi: 10.1016/j.jphs.2016.05.002
  64. Zefirov T. L., Faskhutdinov L. I., Ziyatdinova N. I., Galieva A. M., and Zefirov A. L. Effect of stimulation of α2-adrenergic receptors on action potential of working cardiomyocytes in rat atrium. Bull. Exp. Biol. Med., 167, 603–605 (2019). doi: 10.1007/s10517-019-04579-w
  65. Ziyatdinova N. I., Kuptsova A. M., and Faskhutdinov L. I. Effect of α2-Adrenoceptor stimulation on functional parameters of Langendorff-isolated rat heart. Bull. Exp. Biol. Med., 165 (5), 593–596 (2018). doi: 10.1007/s10517-018-4220-9
  66. Kokoz Y. M., Evdokimovskii E. V., Maltsev A. V., Nenov M. N., Nakipova O. V., Averin A. S., Pimenov O. Yu., Teplov I. Y., Berezhnov A. V., Reyes S., and Alekseev A. E. Sarcolemmal α2-adrenoceptors control protective cardiomyocyte-delimited sympathoadrenal response. J. Mol. Cell. Cardiol., 100, 9–20 (2016). doi: 10.1016/j.yjmcc.2016.09.006
  67. Zhao J., Zhou C.-L., Xia Z.-Y., and Wang L. Effects of dexmedetomidine on L-type calcium current in rat ventricular myocytes. Acta Cardiol. Sin., 29, 175–180 (2013). PMCID: PMC4804780
  68. Averin A. S., Nakipova O. V., Kosarsky L. S., and Pimenov O. Activation of sarcolemmal α2 adrenoceptors support Ca2+ homeostasis and prevents ventricular arrhythmia under sympathetic stress. Biophysica, 64 (5), 793–798 (2019)
  69. Gavras I., Manolis A. J., and Gavras H. The alpha2adrenergic receptors in hypertension and heart failure: experimental and clinical studies. J. Hypertens., 19 (12), 2115–2124 (2001). doi: 10.1097/00004872-200112000-00001
  70. Wang C., Yuan W., Hu A., Lin J., Xia Z., Yang C. F., Li Y., and Zhang Zh. Dexmedetomidine alleviated sepsisinduced myocardial ferroptosis and septic heart injury. Mol. Med. Rep., 22 (1), 175–184 (2020). doi: 10.3892/mmr.2020.11114
  71. Wu W., Du Z., and Wu L. Dexmedetomidine attenuates hypoxia-induced cardiomyocyte injury by promoting telomere/telomerase activity: Possible involvement of ERK1/2-Nrf2 signaling pathway. Cell Biol. Int., 46 (7), 1036–1046, (2022). doi: 10.1002/cbin.11799
  72. Yu J.-L., Jin Y., Cao X.-Y., and Gu H.-H. Dexmedetomidine alleviates doxorubicin cardiotoxicity by inhibiting mitochondrial reactive oxygen species generation. Hum. Cell, 33 (1), 47–56 (2020). doi: 10.1007/s13577-019-00282-0
  73. Bylund D. B., Regan J. W., Faber J. E., Hieble J. P., Triggle C. R., and Ruffolo R. R., Jr. Vascular alpha-adrenoceptors: from the gene to the human. Can. J. Physiol. Pharmacol., 73 (5), 533–543 (1995). doi: 10.1139/y95-068
  74. Castillo E. F., Ortiz C. S., Lopez R. M., Ruiz A., Velez M., and Castillo C. Evidence against alpha-adrenoceptors mediating relaxation in rat thoracic aortae: alpha-agonists relaxation depends on interaction with alpha-adrenoceptors. Fundam. Clin. Pharmacol., 20 (4), 339–349 (2006). doi: 10.1111/j.1472-8206.2006.00421.x
  75. Wong E. S. W., Man R. Y. K., Vanhoutte P. M., and Kwok F. J. Ng. Dexmedetomidine induces both relaxations and contractions, via different {alpha}2-adrenoceptor subtypes, in the isolated mesenteric artery and aorta of the rat. J. Pharmacol. Exp. Ther., 335 (3), 659–664 (2010). doi: 10.1124/jpet.110.170688
  76. Kim H.-J., Sohn J.-T., Jeong Y.-S., Cho M. S., Kim H. J., Chang K. C., Shin M.-K., Park C.-S., and Chung Y.-K. Direct effect of dexmedetomidine on rat isolated aorta involves endothelial nitric oxide synthesis and activation of the lipoxygenase pathway. Clin. Exp. Pharmacol. Physiol., 36 (4), 406–412 (2009). doi: 10.1111/j.1440-1681.2008.05082.x
  77. Byon H.-J., Ok S.-H., Lee S. H., Kang S., Cho Y., Han J. Y., and Sohn J.-T. Dexmedetomidine inhibits phenylephrineinduced contractions via alpha-1 adrenoceptor blockade and nitric oxide release in isolated rat aortae. Int. J. Med. Sci., 14 (2), 143–149 (2017). doi: 10.7150/ijms.17456
  78. Ambar N., Eshar D., Shrader T. C., and Beaufrere H. Anesthetic effects of intramuscular alfaxalone-ketamine in naked mole rats (Heterocephalus glaber). J. Am. Assoc. Lab. Anim. Sci., 59 (5), 539–545 (2020). doi: 10.30802/AALAS-JAALAS-19-000170
  79. Eshar D. and Beaufrere H. Anesthetic effects of dexmedetomidineketamine-midazolam administered intramuscularly in five-striped palm squirrels (Funambulus pennantii). Am. J. Vet. Res., 80 (12), 1082–1088 (2019). doi: 10.2460/ajvr.80.12.1082
  80. Elliott M., Fairchild K., Zanelli S., McPherson C., and Vesoulis Z. Dexmedetomidine during therapeutic hypothermia: a multicenter quality initiative. Hosp. Pediatr., 14 (1), 30–36 (2024). doi: 10.1542/hpeds.2023-007403
  81. Elliott M., Burnsed J., Heinan K., Letzkus L., Andris R., Fairchild K., and Zanelli S. Effect of dexmedetomidine on heart rate in neonates with hypoxic ischemic encephalopathy undergoing therapeutic hypothermia. J. Neonatal Perinatal Med., 15 (1), 47–54 (2022). doi: 10.3233/NPM-210737
  82. Atalik E. K., Sahin A. S., Kilic M., and Doğan N. Role of the endothelium on the response to adrenoceptor agonists of rabbit aorta during cooling. Fundam. Clin. Pharmacol., 14 (1), 25–30 (2000). doi: 10.1111/j.1472-8206.2000.tb00390.x
  83. Flavahan N. A., Lindblad L. E., Verbeuren T. J., Shepherd J. T., and Vanhoutte P. M. Cooling and alpha 1and alpha 2-adrenergic responses in cutaneous veins: role of receptor reserve. Am. J. Physiol., 249 (5 Pt 2), H950–H955 (1985). doi: 10.1152/ajpheart.1985.249.5.H950
  84. Harker C. T., Ousley P. J., Harris E. J., Edwards J. M., Taylor L. M., and Porter J. M. The effects of cooling on human saphenous vein reactivity to adrenergic agonists. J. Vasc. Surg., 12 (1), 45–49 (1990). doi: 10.1067/mva.1990.20311
  85. Vanhoutte P. M. and Flavahan N. A. Effects of temperature on alpha adrenoceptors in limb veins: role of receptor reserve. Fed. Proc., 45 (9), 2347–2354 (1986). PMID: 3015688
  86. Iida H., Iida M., Ohata H., Nagase K., and Dohi S. Hypothermia attenuates the vasodilator effects of dexmedetomidine on pial vessels in rabbits in vivo. Anesth. Analg., 98 (2), 477–482 (2004). doi: 10.1213/01.ANE.0000099365.30804.42
  87. Khamssi M. and Brodde O. E., The role of cardiac beta1and beta2-adrenoceptor stimulation in heart failure. J. Cardiovasc. Pharmacol., 16 (Suppl. 5), S133–137 (1990). PMID: 11527117
  88. Baker A. J. Adrenergic signaling in heart failure: a balance of toxic and protective effects. Pflugers Arch., 466 (6), 1139–1150 (2014). doi: 10.1007/s00424-014-1491-5
  89. Fajardo G., Zhao M., Berry G., Wong L.-J., Mochly-Rosen D., and Bernstein D. β2-adrenergic receptors mediate cardioprotection through crosstalk with mitochondrial cell death pathways. J. Mol. Cell Cardiol., 51 (5), 781–789 (2011). doi: 10.1016/j.yjmcc.2011.06.019
  90. Song Y., Xu C., Liu J., Y. Li, Wang H., Shan D., Wainer I. W., Hu X., Zhang Y., Woo A. Y.-H., and Xiao R.-P. Heterodimerization with 5-HT2BR is indispensable for β2AR-mediated cardioprotection. Circ. Res., 128 (2), 262–277 (2021). doi: 10.1161/CIRCRESAHA.120.317011
  91. Tibenska V., Marvanova A., Elsnicova B., Hejnova L., Vebr P., Novotny J., Kolar F., Novakova O., and Zurmanova J. M. The cardioprotective effect persisting during recovery from cold acclimation is mediated by the β2-adrenoceptor pathway and Akt activation. J. Appl. Physiol., 130 (3), 746–755 (2021). doi: 10.1152/japplphysiol.00756.2020
  92. Moniotte S., Kobzik L., Feron O., Trochu J. N., Gauthier C., and Balligand J. L. Upregulation of beta(3)-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation, 103 (12), 1649–1655 (2001). doi: 10.1161/01.cir.103.12.1649
  93. Angelone T., Filice E., Quintieri A. M., Imbrogno S., Recchia A., Pulera E., Mannarino C., Pellegrino D., and Cerra M. C. Beta3-adrenoceptors modulate left ventricular relaxation in the rat heart via the NO-cGMP-PKG pathway. Acta Physiol. (Oxford), 193 (3), 229–239 (2008). doi: 10.1111/j.1748-1716.2008.01838.x
  94. Treinys R., Zablockaitė D., Gendvilienė V., Jurevičius J., and Skeberdis V. A. β3-Adrenergic regulation of Ltype Ca2+ current and force of contraction in human ventricle. J. Membr. Biol., 247 (4), 309–318 (2014). doi: 10.1007/s00232-014-9635-2
  95. Garcia-Prieto J., Manuel Garcia-Ruiz J., SanzRosa D., Pun A., Garcia-Alvarez A., Davidson S. M., Fernandez-Friera L., Nuno-Ayala M., FernandezJimenez R., Bernal J. A., Izquierdo-Garcia J. L., Jimenez-Borreguero J., Pizarro G., Ruiz-Cabello J., Macaya C., Fuster V., Yellon D. M., and Ibanez B. β3 adrenergic receptor selective stimulation during ischemia/reperfusion improves cardiac function in translational models through inhibition of mPTP opening in cardiomyocytes. Basic Res. Cardiol., 109 (4), 422 (2014). doi: 10.1007/s00395-014-0422-0
  96. Kayki-Mutlu G., Karaomerlioglu I., Arioglu-Inan E., and Altan V. M. Beta-3 adrenoceptors: A potential therapeutic target for heart disease. Eur. J. Pharmacol., 858, 172468 (2019). doi: 10.1016/j.ejphar.2019.172468
  97. Pott C., Brixius K., Bloch W., Ziskoven C., Napp A., and Schwinger R. H. G. Beta3-adrenergic stimulation in the human heart: signal transduction, functional implications and therapeutic perspectives. Pharmazie, 61 (4), 255–260 (2006). PMID: 16649533
  98. Salie R., Khlani Hassan Alsalhin A., Marais E., and Lochner A. Cardioprotective Effects of Beta3-Adrenergic Receptor (β3-AR) pre-, per-, and post-treatment in ischemia-reperfusion. Cardiovasc. Drugs Ther., 33 (2), 163–177 (2019). doi: 10.1007/s10557-019-06861-5
  99. Oriowo M. A. Different atypical beta-adrenoceptors mediate isoprenaline-induced relaxation in vascular and non-vascular smooth muscles. Life Sci., 56 (15), PL269–275 (1995). doi: 10.1016/0024-3205(95)00076-3
  100. Lopez-Canales O. A., Castillo-Hernandez M. C., VargasRobles H., Rios A., Lopez-Canales J. S., and Escalante B. Role of adenylyl cyclase in reduced β-adrenoceptormediated vasorelaxation during maturation. Braz. J. Med. Biol. Res., 49 (7), e5285 (2016). doi: 10.1590/1414-431X20165285
  101. Shiina S., Kanemura A., Suzuki C., Yamaki F., Obara K., Chino D., and Tanaka Y. β-Adrenoceptor subtypes and cAMP role in adrenaline- and noradrenaline-induced relaxation in the rat thoracic aorta. J. Smooth Muscle Res., 54 (0), 1–12 (2018). doi: 10.1540/jsmr.54.1
  102. Trochu J. N., Leblais V., Rautureau Y., Beverelli F., Le Marec H., Berdeaux A., and Gauthier C. Beta 3-adrenoceptor stimulation induces vasorelaxation mediated essentially by endothelium-derived nitric oxide in rat thoracic aorta. Br. J. Pharmacol., 128 (1), 69–76 (1999). doi: 10.1038/sj.bjp.0702797
  103. Zhao Q., Chen H., Jing J., Wang X., Liu R., Li X., Li H., and Cui X. Role of β3 adrenoceptor in rat thoracic aorta contractility. Int. J. Clin. Exp. Pathol., 10 (9), 9132–9145 (2017). PMCID: PMC6965945
  104. Riishede L. and Nielsen-Kudsk F. Myocardial effects of adrenaline, isoprenaline and dobutamine at hypothermic conditions. Pharmacol. Toxicol., 66 (5), 354–360 (1990). doi: 10.1111/j.1600-0773.1990.tb00762.x
  105. Williams R. G. and Broadley K. J. Responses mediated via beta 1, but not beta 2-adrenoceptors, exhibit hypothermiainduced supersensitivity. Life Sci., 31, 2977 (1982). doi: 10.1016/0024-3205(82)90064-9
  106. Chess-Williams R. G. and Broadley K. J. Temperature dependence of beta 1-adrenoceptor-mediated responses examined by use of partial agonists. Eur. J. Pharmacol., 108 (1), 25–32 (1985). doi: 10.1016/0014-2999(85)90279-1
  107. Melnikov A. L., Lokebo J. E., Lathrop D. A., and Helgesen K. G. Alteration of the cardiac effects of isoproterenol and propranolol by hypothermia in isolated rat atrium. Gen. Pharmacol., 27 (4), 665–668 (1996). doi: 10.1016/0306-3623(95)02078-0
  108. Dietrichs E. S., Schanche T., Kondratiev T., Gaustad S. E., Sager G., and Tveita T. Negative inotropic effects of epinephrine in the presence of increased β-adrenoceptor sensitivity during hypothermia in a rat model. Cryobiology, 70 (1), 9–16 (2015). doi: 10.1016/j.cryobiol.2014.10.012
  109. Mann D. L., Kent R. L., and Parsons B., Cooper G. 4th, Adrenergic effects on the biology of the adult mammalian cardiocyte. Circulation, 85 (2), 790–804 (1992). doi: 10.1161/01.cir.85.2.790
  110. Foster P. S., Goldie R. G., Paterson J. W., and Spina D. Effect of hypothermia on beta 1-adrenoceptor-mediated relaxation of pig bronchus. Br. J. Pharmacol., 80 (4), 699–702 (1983).doi: 10.1111/j.1476-5381.1983.tb10060.x
  111. Kondratiev T. V. and Tveita T. Effects of sympathetic stimulation during cooling on hypothermic as well as posthypothermic hemodynamic function. Can. J. Physiol. Pharmacol., 84 (10), 985–991 (2006). doi: 10.1139/y06-051
  112. Lauri T. Cardiovascular responses to beta-stimulation with isoproterenol in deep hypothermia. J. Appl. Physiol., 81 (2), 573–577 (1996). doi: 10.1152/jappl.1996.81.2.573

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies