Long-Term Luminescence Kinetics of Erythrosine in Breast Tissue in vitro

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The kinetics of delayed fluorescence and phosphorescence of the photosensitizer erythrosine in fragments of normal tissues and malignant breast tumors of patients at an oncology clinic was studied in vitro. It has been shown that the kinetics of delayed fluorescence of the dye is formed as a superposition of signals of thermally activated luminescence and luminescence resulting from singlet-triplet annihilation of photosensitizer molecules and singlet oxygen. The quenching of the annihilation component of delayed fluorescence was discovered when molecules were excited by a series of n pulses with a frequency of 5–10 Hz. The shape of the delayed fluorescence curve, the intensity and duration of the afterglow of dye molecules are determined by the ratio of the rates of consumption/regeneration of oxygen content in tissues. A correlation between delayed fluorescence indicators and the clinical and morphological characteristics of tumors has been established, and the application of the results in rapid optical diagnostics of tissues is discussed.

Sobre autores

S. Letuta

Orenburg State University

Orenburg, Russia

A. Ishemgulov

Orenburg State University

Email: azamat.ischemgulov@yandex.ru
Orenburg, Russia

M. Senchukova

Orenburg State Medical University

Orenburg, Russia

Bibliografia

  1. Tuchin V. V. Tissue optics, light scattering methods and instruments for medical diagnostics (SPIE Press Book, 2015).
  2. Demchenko A. P. Introduction to fluorescence sensing (Wiesbaden, Springer Science & Business Media, 2010).
  3. Berezin M. Y. and Achilefu S. Fluorescence lifetime measurements and biological imaging. Chem. Rev., 110, 2641–2684 (2010). doi: 10.1021/cr900343z
  4. Mieog J. S. D., Achterberg F. B., Zlitni A., Hutteman M., Burggraaf J., Swijnenburg R.-J., Gioux S., and Vahrmeijer A. L. Fundamentals and developments in fluorescence-guided cancer surgery. Nat. Rev. Clin. Oncol., 19 (1), 9–22 (2022). doi: 10.1038/s41571-021-00548-3
  5. Ito R., Kamiya M., and Urano Y. Molecular probes for fluorescence image-guided cancer surgery. Curr. Opin. Chem. Biol., 67, 102112 (2022). doi: 10.1016/j.cbpa.2021.102112
  6. Lan M., Zhao Sh., Liu W., Lee Ch.-S., Zhang W., and Wang P. Photosensitizers for photodynamic therapy. Adv. Healthcare Mater., 8 (13), E1900132 (2019). doi: 10.1002/adhm.201900132
  7. Janotka M. and Ostadal P. Biochemical markers for clinical monitoring of tissue perfusion. Mol. Cell Biochem., 473 (3), 1313–1326 (2021). doi: 10.1007/s11010-020-04019-8
  8. Murphy M. P., Bayir H., Belousov V., Chang Ch. J., Davies K. J. A., Davies M. J., Dick T. P., Finkel T., Forman H. J., Janssen-Heininger Y., Gems D., KaganV. E., Kalyanaraman B., Larsson N.-G., Milne G. L., Nystrom Th., Poulsen H. E., Radi R., Van Remmen H., Schumacker P. T., Thornalley P. J., Toyokuni Sh., Winterbourn Ch. C., Yin H., and Halliwell B. Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat. Metab., 4 (6), 651–662 (2022). doi: 10.1038/s42255-02200591-z
  9. Rey-Barroso L. Optical Technologies for the Improvement of Skin Cancer Diagnosis: A Review. Sensors (Basel), 21 (1), 252 (2021). doi: 10.3390/s21010252
  10. Grosenick D., Rinneberg H., Cubeddu R., and Taroni P. Review of optical breast imaging and spectroscopy. J. Biomed. Opt., 21 (9), 091311 (2016). doi: 10.1117/1.JBO.21.9.091311
  11. Kautsky H. and Muller G. Luminescenzumwandlung durch Sauerstoff. Nachweis geringster Sauerstoffmengen, Z. Naturforsch. A, 2, 167–172 (1947). doi: 10.1515/zna-1947-0308
  12. Parker C. A. and Hatchard C. G. Triplet-singlet emission in fluid solutions. Trans. Faraday Soc., 57, 1894–1904 (1961). doi: 10.1039/TF9615701894
  13. Kenner R. D. and Khan A. U. Molecular oxygen enhanced fluorescence of organic molecules in polymer matrices: a singlet oxygen feedback mechanism. J. Chem. Phys., 64 (5), 1877–1882 (1976). doi: 10.1063/1.432471
  14. Croizat G., Gregor A., Gerelli E., Joniova J., Scholz M., and Wagnieres G. A general framework for non-exponential delayed fluorescence and phosphorescence decay analysis, illustrated on protoporphyrin IX. J. Photochem. Photobiol. B, 209, 111887 (2020). doi: 10.1016/j.jphotobiol.2020.111887
  15. van Dijk L. J. D., Ubbink R., Terlouw L. G., van Noord D., Mik E. G., Bruno M. J. Oxygen-dependent delayed fluorescence of protoporphyrin IX measured in the stomach and duodenum during upper gastrointestinal endoscopy. J. Biophotonics, 12, e201900025 (2019). doi: 10.1002/jbio.201900025
  16. Mosinger J, Lang K., Hostomsky J., Franc J., Sykora J., Hof M., and Kubat P. Singlet oxygen imaging in polymeric nanofibers by delayed fluorescence. J. Phys. Chem. B, 114 (48), 15773–15779 (2010). doi: 10.1021/jp105789p
  17. Scholz M., Gunn J. R., Luke G. P., and Pogue B. W. Imaging of singlet oxygen feedback delayed fluorescence and lysosome permeabilization in tumor in vivo during photodynamic therapy with aluminum phthalocyanine. J. Biomed. Opt., 25 (6), 063806 (2020). doi: 10.1117/1.JBO.25.6.063806
  18. Letuta S. N., Pashkevich S. N., Ishemgulov A. T., Lantukh Y. D., Alidzhanov E. K., Sokabaeva S. S., and Bryukhanov V. V. Delayed luminescence of erythrosine in biological tissue and photodynamic therapy dosimetry. J. Photochem. Photobiol. B, 163, 231–236 (2016). doi: 10.1016/j.jphotobiol.2016.08.036
  19. Letuta S. N., Ishemgulov A. T., Letuta U. G., and Pashkevich S. N. Continuous in vivo monitoring of the oxygen concentration in tissues. Biophysics, 63 (5), 798–804 (2018). doi: 10.1134/S0006350918050160
  20. Letuta S. N. Monitoring of Changes in Oxygen Concentration in Tissues by the Kinetics of Delayed Fluorescence of Exogenous Dyes. Opt. Spectr., 127, 1169–1176 (2019). doi: 10.1134/S0030400X19120129
  21. Ke E. Sh., Nazzal S., Tseng Y.-H., Chen Ch.-P., and Tsai Ts.-M. Erythrosine-mediated photodynamic inactivation of bacteria and yeast using green light-emitting diode light. J. Food Drug Anal., 20 (4), 951–956 (2012). doi: 10.6227/jfda.2012200426
  22. Garg A. D., Bose Muthiah, Ahmed M. I., BonassW. A., and Wood S. R. In Vitro Studies on erythrosine-based photodynamic therapy of malignant and pre-malignant oral epithelial cells. PLoS One, 7 (4), e34475 (2012). doi: 10.1371/journal.pone.0034475
  23. Yesilgul N. Singlet Oxygen Generation with Chemical Excitation of an Erythrosine–Luminol Conjugate. ACS Omega, 2 (4), 1367–1371 (2017). doi: 10.1021/acsomega.7b00228
  24. Mishra P., Singh U., Pandey Ch. M., Mishra P., and Pandey G. Application of Student's t-test, analysis of variance, and covariance. Ann. Card. Anaesth., 22 (4), 407–411 (2019). doi: 10.4103/aca.ACA_94_19

Declaração de direitos autorais © Russian Academy of Sciences, 2004

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies