Study of the Influence of Physicochemical Factors on Frequency of Plasmid Transduction by Bacteriophage RB49

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The T4-related bacteropihage RB49 is capable of generalized transduction of plasmids at a relatively high frequency. Due to this mechanism, bacteria can obtain the ability to adapt to varying environmental conditions and survive in new ecological niches. The effect of pH, temperature and long-wave ultraviolet irradiation (λ = 366 nm) on the characteristics of the RB49 phage preparation containing transducing particles with pTurboGFP-B plasmid DNA and virulent particles which have their own DNA. The data were obtained for the changes in the titer of virulent particles and the frequency of transduction of the pTurboGFP-B plasmid by the RB49 phage. Two hours after exposure of the pTurboGFP-B plasmid to UV radiation, the frequency of plasmid transduction by the RB49 phage increased by a factor of ~3. Also, after 40 min storage of the phage in ice, the number of transducing particles produced was many folds greater. Based on the data gathered in the experiment, it is suggested that transducing particles of the RB49 phage can be more resistant to longwave UV radiation and temperatures close to 0°C than virulent particles and are able to provide the transduction process more effectively than under normal conditions. Similar processes may occur in well-lit water bodies including cold-water reservoirs where the phages related to RB49 can be found. This might be an indication of the potential of more intense horizontal gene transfer in aquatic ecotopes than previously thought.

Sobre autores

A. Nikulina

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Email: a.karmanova@ibpm.ru
Pushchino, Russia

N. Nikulin

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Pushchino, Russia

A. Zimin

G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences

Pushchino, Russia

Bibliografia

  1. Fernandez L., Gonzalez S., Quiles-Puchalt N., Gutierrez D., Penades J. R., Garcia P., and Rodriguez A. Lysogenization of Staphylococcus aureus RN450 by phages ϕ11 and ϕ80α leads to the activation of the SigB regulon. Sci. Rep., 8 (1), 12662 (2018). doi: 10.1038/s41598-018-31107-z
  2. Casjens S. Prophages and bacterial genomics: what have we learned so far? Mol. Microbiol., 49, 277–300 (2003). doi: 10.1046/j.1365-2958.2003.03580.x.
  3. Plunkett G. 3rd, Rose D. J., Durfee T. J., and Blattner F. R. Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157:H7: Shiga toxin as a phage late-gene product. J. Bacteriol., 181 (6), 1767–1778 (1999). doi: 10.1128/JB.181.6.1767-1778.1999
  4. Howard-Varona C., Vik D. R., Solonenko N. E., Li Y. F., Gazitua M. C., Chittick L., Samiec J. K., Jensen A. E., Anderson P., Howard-Varona A., Kinkhabwala A. A., Abedon S. T., and Sullivan M. B. Fighting Fire with Fire: Phage Potential for the Treatment of E. coli O157 Infection. Antibiotics (Basel, Switzerland), 7 (4), 101 (2018). doi: 10.3390/antibiotics7040101
  5. Torres-Barcelo C. The disparate effects of bacteriophages on antibiotic-resistant bacteria. Emerg. Microbes Infect., 7 (1), 168 (2018). doi: 10.1038/s41426018-0169-z
  6. Varga M., Pantu Ček R., Ru Žičkova V., and Doškarˇ J. Molecular characterization of a new efficiently transducing bacteriophage identified in meticillin-resistant Staphylococcus aureus. J. Gen. Virol., 97 (1), 258–268 (2016). doi: 10.1099/jgv.0.000329
  7. Varga M., Kuntova L., Pantůček R., Mašlaňova I., Růžičkova V., and Doškař J. Efficient transfer of antibiotic resistance plasmids by transduction within methicillinresistant Staphylococcus aureus USA300 clone. FEMS Microbiol. Lett., 332 (2), 146-152 (2012). doi: 10.1111/j.1574-6968.2012.02589.x
  8. Chiang Y. N., Penades J. R., and Chen J. Genetic transduc-tion by phages and chromosomal islands: The new and noncanonical. PLoS Pathog., 15 (8) (2019). doi: 10.1371/journal.ppat.1007878
  9. Thierauf A., Perez G., and Maloy A. S. Generalized transduction. Methods Mol. Biol., 501, 267–286 (2009). doi: 10.1007/978-1-60327-164-6_23
  10. Humphrey S., Fillol-Salom A., Quiles-Puchalt N., Ibarra-Chavez R., Haag A. F., Chen J. and Penades J. R. Bacterial chromosomal mobility via lateral transduction exceeds that of classical mobile genetic elements. Nature Commun., 12 (1), 6509 (2021). doi: 10.1038/s41467-021-26004-5
  11. Fillol-Salom A., Bacigalupe R., Humphrey S., Chiang Y. N., Chen J., and Penades J. R. Lateral transduction is inherent to the life cycle of the archetypical Salmonella phage P22. Nature Commun., 12 (1), 6510 (2021). doi: 10.1038/s41467-021-26520-4
  12. Chiang Y. N., Penades J. R., and Chen J. Genetic transduction by phages and chromosomal islands: The new and noncanonical. PLoS Pathog., 15 (8) (2019). doi: 10.1371/journal.ppat.1007878
  13. Tanyashin V. I., Zimin A. A., Shlyapnikov M. G., and Boronin A. M. Transduction of Plasmid Antibiotic Resistance Determinants with PseudoT-Even Bacteriophages. Rus. J. Genet., 39, 761–772 (2003). doi: 10.1023/A:1024748903232
  14. Никулина А. Н., Зимин А. А. и Кощаев А. Г. Изучение влияния температуры на трансдукционную способность и литическую активность бактериофагов RB43 и RB49. Труды Кубанского гос. аграрного ун-та, 101, 283–292 (2022). doi: 10.21515/19991703-101-283-292
  15. Simmonds P., Adriaenssens E. M., Zerbini F. M., Abrescia N. G. A., Aiewsakun P., Alfenas-Zerbini P., Bao Y., Barylski J., Drosten Ch., Duffy S., DuprexW. P., Dutilh B. E., Elena S. F., Garcia M. L., Junglen S., Katzourakis A., Koonin E. V., Krupovic M., Kuhn J. H., Lambert A. J., Lefkowitz E. J., Łobocka M., Lood C., Mahony J., MeierKolthoff J. P., Mushegian A. R., Oksanen H. M., Poranen Minna M., Reyes-Munoz A., Robertson D. L., Roux S., Rubino L., Sabanadzovic S., Siddell S., SkernT., Smith D. B., Sullivan M. B., Suzuki N., Turner D., Van Doorslaer K., Vandamme A.-M., Varsani A., and Vasilakis N. Four principles to establish a universal virus taxonomy. PLoS Biol., 21 (2), e3001922 (2023). doi: 10.1371/journal.pbio.3001922
  16. Monod C., Repoila F., Kutateladze M., Tetart F., and Krisch, H. M. The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4. J. Mol. Biol., 267 (2), 237–249 (1997). doi: 10.1006/jmbi.1996.0867
  17. Gao S., Zhang L., and Rao V. B. Exclusion of small terminase mediated DNA threading models for genome packaging in bacteriophage T4. Nucl. Acids Res., 44 (9), 4425–4439 (2016). doi: 10.1093/nar/gkw184
  18. Gao S. and Rao V. B. Specificity of interactions among the DNA-packaging machine components of T4-related bacteriophages. J. Biol. Chem., 286 (5), 3944–3956 (2011). doi: 10.1074/jbc.M110.196907
  19. Rao V.B., Fokine A., Fang Q., and Shao Q. Bacteriophage T4 head: structure, assembly, and genome packaging. Viruses, 15 (2), 527 (2023). doi: 10.3390/v15020527
  20. Takahashi H. and Saito H. Mechanism of pBR322 transduction mediated by cytosine-substituting T4 bacteriophage. Mol. Gen. Genet., 186 (4), 497–500 (1982). doi: 10.1007/BF00337955
  21. Wilson G. G., Young K. Y., Edlin G. J., and KonigsbergW. High-frequency generalised transduction by bacteriophage T4. Nature, 280 (5717), 80–82 (1979). doi: 10.1038/280080a0
  22. Kreuzer K. N. and Alberts B. M. Characterization of a defective phage system for the analysis of bacteriophage T4 DNA replication origins. J. Mol. Biol., 188 (2), 185–198 (1986). doi: 10.1016/0022-2836(86)90303-7
  23. Маниатис Т., Фрич Э. и Сэмбрук Дж. Молекулярное клонирование (Мир, М., 1984).
  24. Jofre J. and Muniesa M. Bacteriophage Isolation and Characterization: Phages of Escherichia coli. Methods Mol. Biol., 2075, 61–79 (2020). doi: 10.1007/978-14939-9877-7_4
  25. Majewska J., Miernikiewicz P., Szymczak A., Kaźmierczak Z., Goszczyński T. M., Owczarek B., Rybicka I., Ciekot J., and Dąbrowska K. Evolution of the T4 phage virion is driven by selection pressure from nonbacterial factors. Microbiol. Spectrum, 11 (5), e00115-23 (2023). doi: 10.1128/spectrum.00115-23
  26. Kejnovsky E., Nejedly K., and Kypr J. Factors influencing resistance of UV-irradiated DNA to the restriction endonuclease cleavage. Int. J. Biol. Macromol., 34 (3), 213–222 (2004). doi: 10.1016/j.ijbiomac.2004.04.004
  27. Nelson K. L., Boehm A. B., Davies-Colley R. J., Dodd M. C., Kohn T., Linden K. G., Liu Yu., Maraccini P. A., McNeill K., Mitch W. A., Nguyen Th. H., Parker K. M., Rodriguez R. A., Sassoubre L. M., Silverman A. I., Wigginton K. R., and Zepp R. G. Sunlightmediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environ. Sci. Process Impacts, 20 (8), 1089–1122 (2018). doi: 10.1039/c8em00047f

Declaração de direitos autorais © Russian Academy of Sciences, 2004

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies