Minimal model for the dependence of stresses in the wall of a cerebral vessel on the parameters of a smooth muscle cell

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A minimal mathematical model of the wall of a small arterial vessel is described. This model is created based on the published results of experiments performed on rat cerebral vessels. It is assumed that the active stress has only a circumferential component and depends on the circumferential stretch, calcium concentration in the cytoplasm, and the membrane potential of smooth muscle cells. The presented model for a small artery can qualitatively reproduce the results of more sophisticated models for other vessels under normal physiological conditions. Unlike a similar model, that accounts for only one cellular parameter, the addition of membrane potential as one of the main parameters was crucial to reveal a qualitative change in the dependency of circumferential stress on stretch and the radial coordinate with an alteration in vascular tone. At fixed values of membrane potential and calcium concentration in the phase of a development of vascular tone, stress decreases as it approaches the outer wall of the vessel and increases as stretch increases, and after it is formed, the direction of changes in the circumferential stress reverses.

Sobre autores

N. Shadrina

Pavlov Institute of Physiology, Russian Academy of Sciences

Email: nkhsh@yandex.ru
Saint-Petersburg, Russia

Bibliografia

  1. И.В. Гончар, С.А. Балашов, И.А. Валиев и др., Труды МФТИ, 9 (1), 101 (2017).
  2. N. R. Tykocki, E. M. Boerman, and W. F. Jackson, Compr. Physiol., 7 (2), 485 (2018). doi: 10.1002/cphy.c160011
  3. W. F. Jackson, Front. Physiol., 12, 770450 (2021). doi: 10.3389/fphys.2021.770450
  4. H. Chen and G. S. Kassab, Sci. Rep., 7 (1), 9339 (2017). doi: 10.1038/s41598-017-08748-7
  5. Y. Lu, J. Wu, Y. Li, et al., Sci. Rep., 7 (1), 13911 (2017). doi: 10.1038/s41598-017-14276-1
  6. K. Takamizawa, Cardiovasc. Eng. Tech., 10 (4), 604 (2019). doi: 10.1007/s13239-019-00434-1
  7. A. Rachev and K. Hayashi, Ann. Biomed. Eng. 27, 459 (1999). doi: 10.1114/1.19
  8. M. A. Zulliger, A. Rachev, and N. Stergiopulos, Am. J. Physiol. Heart Circ. Physiol., 287, H1335 (2004). doi: 10.1152/ajpheart.00094.2004
  9. B. Zhou, A. Rachev, N. Shazly, J. Mech. Behav. Biomed. Mater., 48, 28 (2015). doi: 10.1016/j.jmbbm.2015.04.004
  10. M. Bol, A. Schmitz, G. Nowak, and T. Siebert, J. Mech. Behav. Biomed. Mater., 13, 215 (2012). doi: 10.1016/j.jtbi.2011.11.012
  11. K. Uhlmann and D. Balzani, Biomech. Model. Mechanobiol., 22, 1049 (2023). doi: 10.1007/s10237-023-01700-x
  12. С. А. Регирер, И. М. Руткевич и П. И Усик, Механика полимеров, № 4, 585 (1975).
  13. S. Murtada, A. Arner, and G. A. Holzapfel, J. Theor. Biol., 297, 176 (2012). doi: 10.1016/j.jtbi.2011.11.012
  14. S. Murtada and G. A. Holzapfel, J. Theor. Biol., 358 (7), 1 (2014). doi: 10.1016/j.jtbi.2014.04.028
  15. A. Navarrete, P. Varela, M. L6pez, et al., Front. Bioeng. Biotechnol., 10, 924019 (2022). doi: 10.3389/fbioe.2022.924019
  16. C. Hai, and R. A. Murphy, Am. J. Physiol., 255, 86 (1988).
  17. J. Stalhand and G. A. Holzapfel, J. Theor. Biol., 397, 13 (2016). doi: 10.1016/j.jtbi.2016.02.028
  18. J. Yang, J. W. Clark, R. M. Bryan, and C. A. Robertson, Med. Engineer. & Physics, 25, 691 (2003). doi: 10.1016/s1350-4533(03)00100-0
  19. J. Yang, J. W. Clark, R. M. Bryan, and C. A. Robertson, Med. Engineer. & Physics, 25, 711 (2003). doi: 10.1016/s1350-4533(03)00101-2
  20. M. Koenigsberger, R. Sauser, D. Seppey, et al., Bophys. J., 95 (6), 2728 (2008). doi: 10.1529/biophysj.108.131136
  21. A. Coccarelli, D. H. Edwards, A. Aggarwal, et al., J. Roy. Soc.Interface, 15, 20170732 (2018). doi: 10.1098/rsif.2017.0732
  22. Н. Х. Шадрина, Биофизика, 66 (1), 157 (2021).
  23. H. J. Knot and M. T. Nelson, J. Physiol., 508 (1), 199 (1998). doi: 10.1111/j.1469-7793.1998.199br.x
  24. G. Gabella, J. Ultrastruct. Res., 84 (1), 24 (1983). doi: 10.1016/s0022-5320(83)90083-7
  25. G. E. Sleek and B. R. Duling, Circ. Res., 59, 620 (1986). doi: 10.1161/01.res.59.6.620
  26. Y. Fung, Biomechanics (Springer-Verlag, N.-Y., 1981).
  27. Н. Х. Шадрина, Изв. РАН. Мех. жидк. и газа, № 2, 3 (2020). doi: 10.31857/S0568528120020115
  28. G. Osol, J. F. Brekke, K. McElroy-Yaggy, and N. I. Gokina, Am. J. Physiol. Heart Circ. Physiol., 283, H2260 (2002). doi: 10.1152/ajpheart.00634.2002
  29. R. Sanft, A. Power, and C. Nicholson, Math. Biosci., 315, 108223 (2019). doi: 10.1016/j.mbs.2019.108223
  30. A. Arner, Eur. J. Physiol., 395, 277 (1982). doi: 10.1007/BF00580790.
  31. H. J. Knot, N. B. Standen, and M. T. Nelson, J. Physiol., 508 (1), 211 (1998). doi: 10.1111/j.1469-7793.1998.211br.x

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies