Searching for sequencing signal anomalies associated with genome structural variations

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Genomic structural variations (SVs) are one of the main sources of genetic diversity. Structural variants as mutagens may have a significant impact on human health and lead to hereditary diseases and cancers. Existing methods of finding structural variants are based on analysis of high-throughput sequencing data and despite significant progress in the development of the detection methods, there is still a need for improving the identification of structural variations with accuracy appropriate for use in a diagnostic procedure. Analysis of the signal of sequencing coverage (i.e., the number of sequencing fragments that aligned to every point of a genome) holds new potential for the design of approaches for structural variations discovery, and can be used as time-series analysis. Here, we present an approach for identification of patterns in the coverage signal. The method has been developed based on algorithms used for analysis of time series data, namely KNN (K-nearest neighbour) search algorithm and the SAX (Symbolic Aggregation Approximation) method. Using the rich dataset encompassing full genomes of 911 individuals with different ethnic backgrounds generated by the Human Genome Diversity Project initiative, we constructed generalized patterns of signal coverage in the vicinity of breakpoints corresponding to various structural variant types. Also, with the benefit of the SAX models of the motifs we developed a software package for fast detection of anomalies in the coverage signal.

Sobre autores

I. Bezdvornykh

St. Petersburg State University

St. Petersburg, Russia

N. Cherkasov

St. Petersburg State University

St. Petersburg, Russia

A. Kanapin

St. Petersburg State University

St. Petersburg, Russia

A. Samsonova

St. Petersburg State University

Email: a.samsonova@spbu.ru
St. Petersburg, Russia

Bibliografia

  1. R. L. Collins, et al., Nature, 581 (7809), 444 (2020).
  2. Y. R. Li, et al., Nature Commun., 11 (1), 255 (2020).
  3. S. Girirajan, et al., Am. J. Human Genetics, 92 (2), 221 (2013).
  4. M. Mahmoud, et al., Genome Biol., 20 (1), 1 (2019).
  5. S. Kosugi, et al., Genome Biol., 20 (1), 117 (2019).
  6. Z. Liu, et al., Genome Biol., 23 (1), 68 (2022).
  7. H. Parikh, et al., BMC Genomics, 17 (1), 64 (2016).
  8. A. Abyzov, et al., Genome Res., 21 (6), 974 (2011).
  9. M. Rapti, et al., Brief Bioinform., 23 (2), bbac049 (2022).
  10. Z. A. Aghbari, Data Knowl. Eng., 52 (3), 333 (2005).
  11. S. Malinowski, et al., Lect. Notes Comput. Sci., 273 (2013).
  12. BGRS/SB-2022 Swaveform: a genome-wide survey of structural variation profiles, Thirteen Int. Multiconference (2022).
  13. A. Bergstrom, et al., Science, 367 (6484), eaay5012 (2020).
  14. M. A. Almarri, et al., Cell, 182 (1), 189 (2020).
  15. H. Sakoe and S. Chiba, IEEE Trans. Acoust. Speech Signal Process., 26 (1), 43 (1978).
  16. F. Petitjean, A. Ketterlin, and P. Gangarski, Pattern Recogn., 44 (3), 678 (2011).
  17. R. Tavenard, et al., J. Mach. Learn. Res., 21 (118), 1 (2020).
  18. B. S. Pedersen and A. R. Quinlan, Bioinformatics, 34 (5), 867 (2018).
  19. D. V. Zhernakova, et al., Genomics, 1 (2019).
  20. T. Rausch, et al., Bioinformatics, 28 (18), i333 (2012).
  21. J. M. Zook, et al., Nat. Biotechnol., 1 (2020).
  22. A. Shumate, et al., Genome Biol., 1 (2020).
  23. J. M. Zook, et al., Sci. Data, 3, 160025 (2016).
  24. L. M. Chapman, et al., PLoS Comput. Biol. 16 (6), e1007933-20 (2020).

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies