Pathogenetic mechanisms of burn disease associated with oxidative membrane damage and ways of their correction

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Despite significant progress in the treatment of burn disease, mortality in this pathology can exceed 50% owing to the development of multiple organ dysfunction syndrome when more than 30% of the body surface area is affected. The review describes the most important molecular and biological mechanisms that underlie the development of multiple organ dysfunction syndrome in which free-radicals cause damage to plasma membranes, mitochondria, damaged mitochondria generate other free radicals, mitochondrial DNA is modified and used as a trigger of inflammatory processes in peripheral organs and systems. Secondary changes in the system of lipid transport in the blood and their role in generalization of multiple organ failure and hormonal imbalance are considered. In view of pathogenic metabolic shifts, use of antioxidants (such as quinones) in combination with lipid metabolism modulators is a reasonable strategy to reduce the activity of the inflammatory process and hormonal imbalance in the treatment of burn disease.

Авторлар туралы

D. Vilyanen

Institute of Fundamental Problems of Biology, Russian Academy of Sciences

Pushchino, Moscow Region, 142290 Russia

N. Pashkevich

Vitebsk State Order of Peoples’ Friendship Medical University

Vitebsk, 210009 Republic of Belarus

M. Borisova-mubarakshina

Institute of Fundamental Problems of Biology, Russian Academy of Sciences

Email: mubarakshinamm@gmail.com
Pushchino, Moscow Region, 142290 Russia

S. Osochuk

Vitebsk State Order of Peoples’ Friendship Medical University

Email: oss62@mail.ru
Vitebsk, 210009 Republic of Belarus

Әдебиет тізімі

  1. M. G. Jeschke, M. E. van Baar, M. A. Choudhry, et al., Nat. Rev. Dis. Primers, 6 (1), 11 (2020). doi: 10.1038/s41572-020-0145-5
  2. P. B. Comish, D. Carlson, R. Kang, and D. Tang, J. Immunol., 205 (5), 1189 (2020). doi: 10.4049/jimmunol.2000439
  3. A. J. Majmundar, W. J. Wong, and M. C. Simon, Mol. Cell, 40 (2), 294 (2010). doi: 10.1016/j.molcel.2010.09.022
  4. P. D'Arpa and K. P. Leung, Adv. Wound Care (New Rochelle), 6 (10), 330 (2017). doi: 10.1089/wound.2017.0733
  5. S. Patel, Curr. Allergy Asthma Rep., 18 (11), 63 (2018). doi: 10.1007/s11882-018-0817-3
  6. J. M. Platnich and D. A. Muruve, Arch. Biochem. Biophys., 670, 4 (2019). doi: 10.1016/j.abb.2019.02.008
  7. C. Ott, K. Jacobs, E. Haucke, et al., Redox Biol, 2, 411 (2014). doi: 10.1016/j.redox.2013.12.016
  8. D. Pantalone, C. Bergamini, J. Martellucci, et al., Int. J. Mol. Sci., 22 (13), 7020 (2021). doi: 10.3390/ijms22137020
  9. M. P. Rowan, L. C. Cancio, E. A. Elster, et al., Crit. Care, 19, 243 (2015). doi: 10.1186/s13054-015-0961-2
  10. A. Beiraghi-Toosi, R. Askarian, F. Sadrabadi Haghighi, et al., Emerg. (Tehran), 6 (1), e54 (2018).
  11. Н. Т. Ватутин, Г. А. Игнатенко, Г. Г. Тарадин и др., Бюл. сибирской медицины, 19 (4), 198 (2020).
  12. J. A. Bortolin, H. T. Quintana, T. de C. Tomé, et al., World J. Hepatol., 8 (6), 322 (2016). doi: 10.4254/wjh.v8.i6.322
  13. J. Ma, Y. Wang, Q. Wu, et al., Burns, 43 (5), 1011 (2017). doi: 10.1016/j.burns.2017.01.028
  14. C.-Y. Yuan, Q.-C. Wang, X.-L. Chen, et al., Burns, 45 (3), 641 (2019). doi: 10.1016/j.burns.2018.09.017
  15. J. Wu, M. Zhou, X. Yu, et al., Minerva Med., 110 (6), 587 (2019). doi: 10.23736/S0026-4806.19.06000-2
  16. A. Niculae, I. Peride, M. Tiglis, et al., Int. J. Mol. Sci., 23 (15), 8712 (2022). doi: 10.3390/ijms23158712
  17. A. V. Kozlov and J. Grillari, Front Med (Lausanne), 9, 806462 (2022). doi: 10.3389/fmed.2022.806462
  18. O. Cetinkale, A. Belce, D. Konukoglu, et al., Burns, 23 (2), 114 (1997). doi: 10.1016/s0305-4179(96)00084-8
  19. Y. K. Youn, G. J. Suh, S. E. Jung, et al., J. Burn Care Rehabil., 19 (6), 542 (1998). doi: 10.1097/00004630-199811000-00015
  20. L. Guo, X. Wu, Y. Zhang, et al., Hepatol. Res., 49 (3), 247 (2019). doi: 10.1111/hepr.13315
  21. J. Khanagavi, T. Gupta, W. S. Aronow, et al., Arch. Med. Sci., 10 (2), 251 (2014). doi: 10.5114/aoms.2014.42577
  22. F. Dépret, W. F. Peacock, K. D. Liu, et al, Ann. Intensive Care, 9 (1), 32 (2019). doi: 10.1186/s13613-019-0509-8
  23. H. Illner and G. T. Shires, Circ. Shock, 9 (3), 259 (1982).
  24. I. Alican, E. E. Unlüer, C. Yeğen, and B. C. Yeğen, Peptides, 21 (8), 1265 (2000). doi: 10.1016/s0196-9781(00)00268-0
  25. A. Weidinger, A. Müllebner, J. Paier-Pourani, et al., Antioxid. Redox Signal., 22 (7), 572 (2015). doi: 10.1089/ars.2014.5996
  26. A. Maroz, R. F. Anderson, R. A. J. Smith, and M. P. Murphy, Free Radic. Biol. Med., 46 (1), 105 (2009). doi: 10.1016/j.freeradbiomed.2008.09.033
  27. H. Nakazawa, K. Ikeda, S. Shinozaki, et al., Sci. Rep., 7 (1), 6618 (2017). doi: 10.1038/s41598-017-07011-3
  28. S.-X. Guo, H.-L. Zhou, C.-L. Huang, et al., Mar. Drugs, 13 (4), 2105 (2015). doi: 10.3390/md13042105
  29. L. Li, J. Zhang, Q. Zhang, et al., Burns Trauma, 7, 8 (2019). doi: 10.1186/s41038-019-0146-3
  30. T. Chao, B. I. Gómez, T. C. Heard, et al., Am. J. Physiol. Cell Physiol., 317 (6), C1229 (2019). doi: 10.1152/ajpcell.00224.2019
  31. J. J. Wen, C. B. Cummins, and R. S. Radhakrishnan, Int. J. Mol. Sci., 21 (7), E2350 (2020). doi: 10.3390/ijms21072350
  32. J. B. Perry, G. N. Davis, M. E. Allen, et al., J. Mol. Cell. Cardiol., 135, 160 (2019). doi: 10.1016/j.yjmcc.2019.08.010
  33. Q. Zang, D. L. Maass, J. White, and J. W. Horton, J. Appl. Physiol., 102 (1), 103 (2007). doi: 10.1152/japplphysiol.00359.2006
  34. X. Lu, T. Costantini, N. E. Lopez, et al., J. Cell. Mol. Med., 17 (5), 664 (2013). doi: 10.1111/jcmm.12049
  35. R. Xiao, M. Teng, Q. Zhang, et al., PLoS One, 7 (6), e39488 (2012). doi: 10.1371/journal.pone.0039488
  36. J. Marín-García and M. J. Goldenthal, J. Card. Fail., 8 (5), 347 (2002). doi: 10.1054/jcaf.2002.127774
  37. E. P. K. Yu and M. R. Bennett, Free Radic. Biol. Med., 100, 223 (2016). doi: 10.1016/j.freeradbiomed.2016.06.011
  38. R. Yue, X. Xia, J. Jiang, et al., J. Cell Physiol., 230 (9), 2128 (2015). doi: 10.1002/jcp.24941
  39. Y. Wu, C. Hao, X. Liu, et al., Int. Immunopharmacol., 80, 106189 (2020). doi: 10.1016/j.intimp.2020.106189
  40. W.-J. Zhang, Z.-M. Fang, and W.-Q. Liu, Parasit. Vectors, 12 (1), 29 (2019). doi: 10.1186/s13071-018-3223-8
  41. A. P. West and G. S. Shadel, Nat. Rev. Immunol., 17 (6), 363 (2017). doi: 10.1038/nri.2017.21
  42. G. L. Vega, P. Alaupovic, Z. J. Zhang, et al., J. Burn Care Rehabil., 9 (1), 18 (1988). doi: 10.1097/00004630-198801000-00006
  43. F. Rassoul, V. Richter, C. Kistner, et al., West Ind. Med. J., 58 (5), 417 (2009).
  44. B. R. Gordon, T. S. Parker, D. M. Levine, et al., Crit. Care Med., 24 (4), 584 (1996). doi: 10.1097/00003246-199604000-00006
  45. B. R. Gordon, T. S. Parker, D. M. Levine, et al., Crit. Care Med., 29 (8), 1563 (2001). doi: 10.1097/00003246-200108000-00011
  46. H. E. C. Vanni, B. R. Gordon, D. M. Levine, et al., J. Burn Care Rehabil., 24 (3), 133 (2003). doi: 10.1097/01.BCR.0000066812.96811.28
  47. E. J. Coombes, P. G. Shakespeare, and G. F. Batstone, J. Trauma, 20 (11), 971 (1980). doi: 10.1097/00005373-198011000-00012
  48. R. L. Harris, G. L. Cottam, J. M. Johnston, and C. R. Baxter, J. Trauma, 21 (1), 13 (1981). doi: 10.1097/00005373-198101000-00002
  49. O. Cetinkale and Z. Yazici, Burns, 23 (5), 392 (1997). doi: 10.1016/s0305-4179(97)89764-1
  50. J. T. Grbic, J. A. Mannick, D. B. Gough, and M. L. Rodrick, Ann. Surg., 214 (3), 253 (1991). doi: 10.1097/00000658-199109000-00008
  51. K. L. Fritsche, Adv. Nutr., 6 (3), 293S (2015). doi: 10.3945/an.114.006940
  52. A. Nicolaou, Prostaglandins Leukot. Essent. Fatty Acids, 88 (1), 131 (2013). doi: 10.1016/j.plefa.2012.03.009
  53. S. Bohr, S. J. Patel, D. Sarin, et al., Wound Repair Regen., 21 (1), 35 (2013). doi: 10.1111/j.1524-475X.2012.00853.x
  54. G. Talabér, M. Jondal, and S. Okret, Mol. Cell. Endocrinol., 380 (1-2), 89 (2013). doi: 10.1016/j.mce.2013.05.007
  55. T. L. Palmieri, S. Levine, N. Schonfeld-Warden, et al., J. Burn Care Res., 27 (5), 742 (2006). doi: 10.1097/01.BCR.0000238098.43888.07
  56. E. Raposio, M. P. Grieco, and E. Caleffi, J. Plast. Surg. Hand Surg., 51 (6), 393 (2017). doi: 10.1080/2000656X.2017.1281821
  57. S. Ravi, K. A. Peña, C. T. Chu, and K. Kiselyov, Cell Calcium, 60 (5), 356 (2016). doi: 10.1016/j.ceca.2016.08.002
  58. A. A. Naumov, Y. V. Shatalin, T. K. Sukhomlin, and M. M. Potselueva, Bull. Exp. Biol. Med., 147 (4), 531 (2009). doi: 10.1007/s10517-009-0543-x
  59. E. K. Eriksson, K. Edwards, P. Grad, et al., Biochim. Biophys. Acta - Biomembranes, 1861 (7), 1388 (2019). doi: 10.1016/j.bbamem.2019.04.008
  60. J. M. Villalba and P. Navas, Antioxid. Redox Signal., 2 (2), 213 (2000). doi: 10.1089/ars.2000.2.2-213
  61. J. M. Villalba, F. Navarro, F. Córdoba, et al., Proc. Natl. Acad. Sci. USA, 92 (11), 4887 (1995). doi: 10.1073/pnas.92.11.4887
  62. E. Cadenas, P. Hochstein, and L. Ernster, Adv. Enzymol. Relat. Areas Mol. Biol., 65, 97 (1992). doi: 10.1002/9780470123119.ch3
  63. R. E. Beyer, J. Bioenerg. Biomembr., 26 (4), 349 (1994). doi: 10.1007/BF00762775
  64. A. M. James, R. A. J. Smith, and M. P. Murphy, Arch. Biochem. Biophys., 423 (1), 47 (2004). doi: 10.1016/j.abb.2003.12.025
  65. V. Kagan, E. Serbinova, and L. Packer, Biochem. Biophys. Res. Commun., 169 (3), 851 (1990). doi: 10.1016/0006-291x(90)91971-t
  66. P. J. Quinn, J. P. Fabisiak, and V. E. Kagan, Biofactors, 9 (2-4), 149 (1999). doi: 10.1002/biof.5520090209
  67. M. Bentinger, K. Brismar, and G. Dallner, Mitochondrion, 7 Suppl, S41 (2007). doi: 10.1016/j.mito.2007.02.006
  68. M. P. Barroso, C. Gómez-Díaz, J. M. Villalba, et al., J. Bioenerg. Biomembr., 29 (3), 259 (1997). doi: 10.1023/a:1022462111175
  69. M. Inui, M. Ooe, K. Fujii, et al., Biofactors, 32 (1-4), 237 (2008). doi: 10.1002/biof.5520320128
  70. H. Nakazawa, K. Ikeda, S. Shinozaki, et al., FEBS OpenBio, 9 (2), 348 (2019). doi: 10.1002/2211-5463.12580
  71. M. W. Donnino, S. J. Mortensen, L. W. Andersen, et al., Crit. Care, 19, 275 (2015). doi: 10.1186/s13054-015-0989-3
  72. N. Kuriyama, T. Nakamura, H. Nakazawa, et al., Metabolites, 12 (7), 613 (2022). doi: 10.3390/metabo12070613
  73. U. Maciejewska, L. Polkowska-Kowalczyk, E. Swiezewska, and A. Szkopinska, Acta Biochim. Polonica, 49 (3), 775 (2002). doi: 10.18388/abp.2002_3785
  74. M. Mubarakshina, S. Khorobrykh, and B. Ivanov, Biochim. Biophys. Acta - Bioenergetics, 1757 (11), 1496 (2006). doi: 10.1016/j.bbabio.2006.09.004
  75. M. M. Mubarakshina and B. N. Ivanov, Physiologia Plantarum, 140 (2), 103 (2010). doi: 10.1111/j.1399-3054.2010.01391.x
  76. M. Kozuleva, I. Klenina, I. Proskuryakov, et al., FEBS Lett., 585 (7), 1067 (2011). doi: 10.1016/j.febslet.2011.03.004
  77. M. Kozuleva, I. Klenina, I. Mysin, et al., Free Radic. Biol. Med., 89, 1014 (2015). doi: 10.1016/j.freeradbiomed.2015.08.016
  78. C. Triantaphylidès, M. Krischke, F. A. Hoeberichts, et al., Plant Physiol., 148 (2), 960 (2008). doi: 10.1104/pp.108.125690
  79. J. Kruk and A. Trebst, Biochim. Biophys. Acta, 1777 (2), 154 (2008). doi: 10.1016/j.bbabio.2007.10.008
  80. S. Rajagopal, E. A. Egorova, N. G. Bukhov, and R. Carpentier, Biochim. Biophys. Acta, 1606 (1-3), 147 (2003). doi: 10.1016/s0005-2728(03)00111-7
  81. V. P. Skulachev, Y. N. Antonenko, D. A. Cherepanov, et al., Biochim. Biophys. Acta, 1797 (6-7), 878 (2010). doi: 10.1016/j.bbabio.2010.03.015
  82. S. Kishi, K. Saito, Y. Kato, and H. Ishikita, Photosynth. Res., 134 (2), 193 (2017). doi: 10.1007/s11120-017-0433-4
  83. M. Iwashima, J. Mori, X. Ting, et al., Biol. Pharm. Bull., 28 (2), 374 (2005). doi: 10.1248/bpb.28.374
  84. J. Mori, M. Iwashima, H. Wakasugi, et al., Chem. Pharm. Bull. (Tokyo), 53 (9), 1159 (2005). doi: 10.1248/cpb.53.1159
  85. A. L. Pérez-Castorena, A. Arciniegas, M. T. Apan, et al., Planta Med., 68 (7), 645 (2002). doi: 10.1055/s-2002-32890
  86. R. J. Burns, R. A. Smith, and M. P. Murphy, Arch. Biochem. Biophys., 322 (1), 60 (1995). doi: 10.1006/abbi.1995.1436
  87. G. F. Kelso, C. M. Porteous, C. V. Coulter, et al., J. Biol. Chem., 276 (7), 4588 (2001). doi: 10.1074/jbc.M009093200
  88. Y. N. Antonenko, A. V. Avetisyan, L. E. Bakeeva, et al., Biochemistry (Moscow), 73 (12), 1273 (2008). doi: 10.1134/s0006297908120018
  89. D. N. Silachev, E. Y. Plotnikov, L. D. Zorova, et al., Molecules, 20 (8), 14487 (2015). doi: 10.3390/molecules200814487
  90. D. V. Cherkashina, I. A. Sosimchik, O. A. Semenchenko, et al., Biochemistry (Moscow), 76 (9), 1022 (2011). doi: 10.1134/S0006297911090069
  91. P. Nakhaei, R. Margiana, D. O. Bokov, et al., Front. Bioeng. Biotechnol., 9, 705886 (2021). doi: 10.3389/fbioe.2021.705886
  92. Y. N. Antonenko, I. V. Perevoshchikova, T. I. Rokitskaya, et al., J. Bioenerg. Biomembr., 44 (4), 453 (2012). doi: 10.1007/s10863-012-9449-9

© Russian Academy of Sciences, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>