Effects of seeding on lysozyme amyloid fibrillation in the presence of epigallocatechin and polyethylene glycol


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Preformed amyloid fibrils can act as seeds for accelerating protein fibrillation. In the present study, we examined the effects of preformed seeds on lysozyme amyloid fibrillation in the presence of two distinct inhibitors–epigallocatechin (EGC) and polyethylene glycol 2000 (PEG). The results demonstrated that the effects of fibrillar seeds on the acceleration of lysozyme fibrillation depended on the aggregation pathway directed by an inhibitor. EGC inhibited lysozyme fibrillation and modified the peptide chains with quinone moieties in a concentration-dependent manner. The resulting aggregates showed amorphous off-pathway morphology. Preformed fibril seeds did not promote lysozyme fibrillation in the presence of EGC. PEG also inhibited lysozyme fibrillation, and the resulting aggregates showed on-pathway protofibrillar morphology. In contrast, the addition of fibril seeds into the mixture of lysozyme and PEG significantly stimulated fibril growth. Assays of cell viability showed that both EGC and PEG inhibited the formation of cytotoxic species. In accordance with thioflavine T data, the seeds failed to alter the cell-damaging potency of the EGC-directed off-pathway aggregates, but increased the cytotoxicity of the PEG-directed on-pathway fibrils. We suggest that the pattern of interaction between lysozyme and an inhibitor determines the pathway of aggregation and therefore the effects of seeding on amyloid formation. EGC covalently modified lysozyme chains with quinones, directing the aggregation to proceed through an off-pathway, whereas PEG affected the protein in a noncovalent manner, and fibril growth could be stimulated under seeding through an on-pathway.

作者简介

Li-Xiu Kong

Shaanxi Normal University, School of Chemistry and Chemical Engineering

Email: chengmingzeng@snnu.edu.cn
中国, Xi’an, 710119

Cheng-Ming Zeng

Shaanxi Normal University, School of Chemistry and Chemical Engineering

编辑信件的主要联系方式.
Email: chengmingzeng@snnu.edu.cn
中国, Xi’an, 710119


版权所有 © Pleiades Publishing, Ltd., 2017
##common.cookie##