Calcineurin and Its Role in Synaptic Transmission


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Calcineurin (CaN) is a serine/threonine phosphatase widely expressed in different cell types and structures including neurons and synapses. The most studied role of CaN is its involvement in the functioning of postsynaptic structures of central synapses. The role of CaN in the presynaptic structures of central and peripheral synapses is less understood, although it has generated a considerable interest and is a subject of a growing number of studies. The regulatory role of CaN in synaptic vesicle endocytosis in the synapse terminals is actively studied. In recent years, new targets of CaN have been identified and its role in the regulation of enzymes and neurotransmitter secretion in peripheral neuromuscular junctions has been revealed. CaN is the only phosphatase that requires calcium and calmodulin for activation. In this review, we present details of CaN molecular structure and give a detailed description of possible mechanisms of CaN activation involving calcium, enzymes, and endogenous and exogenous inhibitors. Known and newly discovered CaN targets at pre-and post-synaptic levels are described. CaN activity in synaptic structures is discussed in terms of functional involvement of this phosphatase in synaptic transmission and neurotransmitter release.

Sobre autores

E. Tarasova

Lomonosov Moscow State University

Email: gaydukov@gmail.com
Rússia, Moscow, 119991

A. Gaydukov

Lomonosov Moscow State University; Pirogov Russian National Research Medical University

Autor responsável pela correspondência
Email: gaydukov@gmail.com
Rússia, Moscow, 119991; Moscow, 117997

O. Balezina

Lomonosov Moscow State University

Email: gaydukov@gmail.com
Rússia, Moscow, 119991


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies