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Автоматика и телемеханика, № 1, 2025

Линейные системы
c© 2025 г. В.Е. ХАРТОВСКИЙ, д-р физ.-мат. наук (hartovskij@grsu.by),

О.И. УРБАН (urban_ola@mail.ru)
(Гродненский государственный университет имени Я. Купалы)

ФИНИТНАЯ СТАБИЛИЗАЦИЯ ПО НЕПОЛНЫМ ИЗМЕРЕНИЯМ
СИСТЕМ НЕЙТРАЛЬНОГО ТИПА В КЛАССЕ РЕГУЛЯТОРОВ

С СОСРЕДОТОЧЕННЫМИ СОИЗМЕРИМЫМИ ЗАПАЗДЫВАНИЯМИ1

Для линейной автономной дифференциально-разностной системы ней-
трального типа с сосредоточенными запаздываниями получен критерий
существования и предложен конструктивный способ построения регу-
лятора с обратной связью по наблюдаемому выходу, одновременно ре-
шающего задачу финитной стабилизации (полного успокоения) и обеспе-
чивающего замкнутой системе конечный (но не произвольный) спектр.
Отличительной чертой регулятора является отсутствие в структуре рас-
пределенного запаздывания, что важно для его практической реализа-
ции. Полученные в работе результаты проиллюстрированы числовым
примером.

Ключевые слова: дифференциально-разностная система, нейтральный
тип, запаздывание, финитная стабилизация, регулятор.
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1. Введение

При моделировании многих процессов в экологии, медицине, электродина-
мике, механике деформированного твердого тела, технике, экономике и дру-
гих областях [1–3] используются системы дифференциальных уравнений с
запаздыванием. Учет запаздывания в модели, с одной стороны, способствует
повышению надежности при описании реальных явлений и прогнозированию
поведения соответствующих систем. С другой стороны, включение характе-
ристик процесса в предшествующие моменты времени в закон эволюции си-
стемы увеличивает ее сложность. В связи с этим исследованию общей теории
систем с запаздыванием, а также использованию таких систем в прикладных
областях посвящено достаточно много работ (см. например, Введение в [3]).
В настоящей статье исследуется вопрос финитной стабилизации линейных
систем нейтрального типа с сосредоточенными запаздываниями в состоянии
и управлении.
Задачи стабилизации для систем с запаздыванием являются достаточно

сложными [4–11] и на сегодняшний день до конца не изучены. Один из воз-
1 Работа выполнена при финансовой поддержке ГПНИ «Конвергенция-2025».
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можных подходов основан на вычислении неустойчивых собственных значе-
ний спектра с последующей заменой их подходящими числами. Однако во-
прос нахождение таких значений является нетривиальной задачей. Поэтому
более универсальным является метод, основанный на решении задачи назна-
чения замкнутой системе конечного спектра [12–15], как правило состоящего
из чисел с отрицательными действительными частями.
Множество собственных значений линейной системы с последействием в

общем случае бесконечно, поэтому вопрос управления всеми собственными
значениями такой системы естественно рассматривать как управление коэф-
фициентами характеристического квазиполинома – задача модального управ-
ления [16–19]. Другое направление исследований, связанное с проблемой ста-
билизации, заключается [14, 20–22] в решении задачи построения регулято-
ра с обратной связью, обеспечивающего равенство нулю через ограниченное
время всех компонент исходной разомкнутой системы, т.е. обеспечивающего
финитную стабилизацию [23, 24] (другими словами, решение задачи полной
0-управляемости регулятором с обратной связью). Одна из оригинальных
идей решения задачи финитной стабилизации заключается [14, 20] в замыка-
нии системы обратной связью так, чтобы замкнутая система стала системой
с конечным спектром, точечно вырожденной в направлениях, соответствую-
щих компонентам вектора-решения исходной системы. Дальнейшее развитие
этих идей на системы нейтрального типа получено в [15, 17, 21, 22], а систем-
ное изложение этих результатов в монографии [25].
В настоящей работе для линейных автономных систем нейтрального ти-

па с сосредоточенными соизмеримыми запаздываниями построен регулятор
финитной стабилизации по выходу, под которым понимается регулятор с об-
ратной связью в виде измерений наблюдаемого выходного сигнала, обеспечи-
вающий одновременно финитную стабилизацию и конечный спектр. Подоб-
ная задача с условием выбора любого конечного спектра в случае системы
запаздывающего типа со скалярными входом и выходом изучена в [24], а для
многовходных систем нейтрального типа в [26]. К недостаткам статьи [26]
следует отнести наличие в регуляторе слагаемых с распределенными запаз-
дываниями, хотя исходный объект управления содержит только сосредото-
ченное запаздывание. Интегралы, содержащие распределенное запаздывание,
при практической реализации заменяются конечными суммами, что даже
при использовании квадратурных формул высокой точности может приве-
сти к нежелательным последствиям (например, потере устойчивости) [27, 28].
Принципиальное отличие настоящей статьи от [26] заключается в новой кон-
струкции регулятора, который содержит сугубо сосредоточенные соизмери-
мые запаздывания. Идея состоит в том, что строится разрывная обратная
связь, определяемая двумя контурами регулятора: внутренним и внешним.
Внутренний контур обеспечивает «сглаживание» решения с течением време-
ни, что достигается за счет построения обратной связи, которая преобразует
исходную систему в систему запаздывающего типа. После того как решение
достигнет необходимой гладкости, «включается» второй контур, цель которо-
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го – обеспечить точечную врожденность замкнутой системы в направлениях,
соответствующих всем компонентам вектора решения исходной (разомкну-
той) системы.

2. Постановка задачи

Пусть исследуемый объект управления описывается линейной автономной
дифференциально-разностной системой нейтрального типа с сосредоточен-
ными соизмеримыми запаздываниями

ẋ(t)−
m∑
i=1

Diẋ(t− ih) =

m∑
i=0

(
Aix(t− ih) +Biu(t− ih)

)
, t > 0,

y(t) =
m∑
i=0

Cix(t− ih), t � 0,

где x – вектор состояния этой системы, u – управление, y – наблюдаемый
выходной сигнал (выход), h = const > 0; Di ∈ R

n×n, Ai ∈ R
n×n, Bi ∈ R

n×r,
Ci ∈ R

l×n.
Обозначим: Ii ∈ R

i×i – единичная матрица, λh – оператор сдвига, опре-
деляемый для заданного h > 0 правилом (λh)

kf(t) = f(t− kh), k ∈ N (для
произвольной функции f). Введем полиномиальные матрицы

D(λ) =

m∑
i=1

Diλ
i, A(λ) =

m∑
i=0

Aiλ
i, C(λ) =

m∑
i=0

Ciλ
i, B(λ) =

m∑
i=0

Biλ
i

и перепишем исходный объект управления в операторном виде(
In −D(λh)

)
ẋ(t) = A(λh)x(t) +B(λh)u(t), t > 0,(1)
y(t) = C(λh)x(t), t � 0.(2)

Решение уравнения (1) однозначно задается начальным условием

x(t) = ϕ(t), u(t)≡ 0, t ∈ [−mh, 0].(3)

Считаем, что ϕ ∈ C̃1
(
[−mh, 0],Rn

)
– неизвестная функция, где C̃k(·) – класс

функций, k − 1 раз непрерывно дифференцируемых и имеющих кусочно-не-
прерывную производную порядка k. Управление u – кусочно-непрерывная
функция.
Пусть R

n×m[p, λ]
(
R
n×m[λ]

)
– множество матриц размера n × m, элемен-

ты которых суть полиномы переменных p, λ (λ) (если m = n = 1, то верхний
индекс не пишем), p

D
= d/dt – оператор дифференцирования.

Определим регулятор с обратной связью по наблюдаемому выходу

u(t) = U11(pD
, λh)y(t) + U12(pD

, λh)x̃(t),

˙̃x(t) = U21(pD , λh)y(t) + U22(pD , λh)x̃(t), t > t0.
(4)
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Здесь x̃ ∈ R
ñ – вспомогательная переменная, t0 > 0 – некоторое число, выбор

которого указывается ниже (u(t)≡ 0, t � t0), U11(p, λ) ∈ R
r×l[p, λ], U12(p, λ) ∈

∈ R
r×ñ[p, λ], U21(p, λ) ∈ R

ñ×l[p, λ], U22(p, λ) ∈ R
ñ×ñ[p, λ]. Для реализации ре-

гулятора (4) задаем начальное условие

x̃(t) = ϕ̃(t), t∈ [t0− h̃, t0]
(
h̃= α̃h, α̃=max{degλ Uk2(p, λ), k= 1, 2}

)
,(5)

где ϕ̃ ∈ C̃p̃([t0− h̃, t0],R
ñ) – любая функция, p̃=max{degp Uk2(p, λ), k = 1, 2},

запись degλ f(λ) обозначает степень полинома (в том числе и матричного).
Цель настоящей работы – построить регулятор в виде (4), который обеспе-

чит выполнение следующих условий: а) каковы бы ни были начальные функ-
ции ϕ в (3) и ϕ̃ в (5), существует число t1 > 0 такое, что векторная компонен-
та x вектора-решения col[x, x̃] замкнутой системы (1), (4) равна нулю начиная
с момента времени, равного t1,

x(t)≡ 0, t � t1;(6)

б) замкнутая система (1), (4) является линейной автономной системой ней-
трального типа с конечным спектром.
Зам е ч а ни е 1. а) Под линейной автономной однородной системой ней-

трального типа с соизмеримыми запаздываниями понимаем линейную авто-
номную систему Υ(p

D
, λh)x(t) = 0, Υ(p, λ) ∈ R

n×n[p, λ], имеющую характери-
стический квазиполином вида

∣∣Υ(p, λ)
∣∣ =∑ν

i=0 p
id̃i(λ), где ν = n degpΥ(p, λ),

d̃i(λ) – полиномы, причем d̃ν(0) = 1, запись вида | · | обозначает определитель
матрицы. Введя вспомогательные переменные, такую систему можно перепи-
сать в виде (1). Линейные автономные дифференциально-разносные системы
запаздывающего типа (d̃ν(λ) ≡ 1) и обыкновенные системы рассматриваем
как частный случай систем нейтрального типа. б) В силу того, что Uij(p, λ) –
полиномиальные матрицы, система (1), (4) имеет только сосредоточенные
соизмеримые запаздывания.

Опр е д е л е н и е 1. Регулятор вида (4), обеспечивающий реализацию
условий а), б), будем называть регулятором финитной стабилизации по
выходу.

Обозначим: W (p, λ) = p
(
In −D(λ)

)
−A(λ).

Лемма 1. Пусть для системы (1), (2) существует регулятор финитной
стабилизации по выходу (4). Тогда выполняются условия

rank
[
W (p, e−ph), B(e−ph)

]
= n ∀p ∈ C;(7)

rank
[
In −D(λ), B(λ)

]
= n ∀λ ∈ C;(8)

rank

[
W (p, e−ph)

C(e−ph)

]
= n ∀p ∈ C;(9)

rank

[
In −D(λ)

C(λ)

]
= n ∀λ ∈ C.(10)

Доказательство см. в Приложении.
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3. Основной результат

Сформулируем основной результат настоящей работы.
Те ор ем а 1. Для того чтобы для системы (1), (2) существовал регу-

лятор финитной стабилизации по выходу (4), необходимо и достаточно,
чтобы выполнялись условия (7)–(10).
Дока з а т е л ь с т в о. Необходимость обоснована леммой 1.

Достаточность. Доказательство достаточности условий теоремы 1 разобьем
на две части. В первой части строится регулятор, реализация которого воз-
можна при условии, что выход y(t) является ρ0 − 1 раз непрерывно диф-
ференцируемой функцией, имеющей кусочно-непрерывную производную по-
рядка ρ0, где число ρ0 определяется в процессе построения регулятора и ука-
зывается в замечании 2. Для того чтобы обеспечить указанное условие на
функцию y(t), считаем, что ϕ ∈ C̃ρ0 . Во второй части доказательства рассмат-
ривается общий случай ϕ ∈ C̃1 и ρ0 > 1, т.е. гладкость начальной функции не
обеспечивает требование к гладкости выхода y(t), которое описанно выше.

3.1. Случай ϕ ∈ C̃ρ0 .

Для доказательства достаточности условий теоремы построим регуля-
тор (4). Процесс построения будет состоять из следующих шагов: 1) построе-
ние регулятора финитной стабилизации по состоянию; 2) построение финит-
ного наблюдателя; 3) синтез регулятора финитной стабилизации по выходу
на основе параметров построенных регулятора и наблюдателя.
1. Построение регулятора финитной стабилизации по состоянию.В силу

соотношений (7), (8) для системы (1) существует [22; 25, c. 358] регулятор
(назовем его регулятором финитной стабилизации по состоянию)

u(t) = L00(pD
, λh)x(t) + L01(pD

, λh)x̄(t),

˙̄x(t) = L10(pD
, λh)x(t) + L11(pD

, λh)x̄(t), t > 0,
(11)

где x̄ ∈ R
n̄ – вспомогательная переменная, L00(p, λ) ∈ R

r×n[p, λ], L01(p, λ) ∈
∈ R

r×n̄[p, λ], L10(p, λ) ∈ R
n̄×n[p, λ], L11(p, λ) ∈ R

n̄×n̄[p, λ], degpLij(p, λ) = 1,
для которого выполняются следующие условия: 1) найдется число t̄1 > 0 та-
кое, что независимо от начального условия системы (1), (11) выполняется
тождество

x(t)≡ 0, t � t̄1;(12)

2) система (1), (11) является линейной автономной системой нейтрально-
го типа с сосредоточенными соизмеримыми запаздываниями и конечным
(но не наперед заданным) спектром. В силу того, что спектр замкнутой систе-
мы конечен, определитель характеристической матрицы этой системы будет
полиномом, т.е. справедливо равенство∣∣W0(p, λ)

∣∣ = d0(p).(13)
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Здесь d0(p) – некоторый полином, W0(p, e
−ph) – характеристическая матрица

системы (1), (11), имеющая вид

W0(p, λ) =

[
W (p, λ)−B(λ)L00(p, λ) −B(λ)L01(p, λ)

−L10(p, λ) pIn̄ − L11(p, λ)

]
.(14)

Укажем идею построения регулятора (11) [22; 25, c. 358]. Условия (7), (8)
являются необходимыми и достаточными для существования таких мат-
риц Lij(p, λ) в (11), что система, соответствующая матрице (14), является
точечно вырожденной в направлениях ēi, i = 1, n+ n̄− 1, где ēi – столбец
матрицы In+n̄ с номером i. Это означает [29], что существует такой момент
времени t̄1, что ē′icol[x(t), x̄(t)]≡ 0, t � t̄1, i = 1, n+ n̄− 1 (символ «′» (штрих)
обозначает операцию транспонирования). Последнее тождество обеспечива-
ет (12). Процесс построения матриц Lij(p, λ) из (11) описан в [22; 25, c. 358].
2. Построение финитного наблюдателя. Под финитным наблюдателем

понимаем [30, 31] зависящую от выхода (3) линейную автономную дифферен-
циальную систему запаздывающего типа с сосредоточенными соизмеримыми
запаздываниями, конечным спектром и выходом v, обладающую следующим
свойством: существует момент времени t∗ > 0, начиная с которого независи-
мо от начальных условий наблюдателя и уравнения (1) выход наблюдателя v
равен решению x уравнения (1), порождающего выход y: x(t) = v(t), t � t∗.
В [30, 31] показано, что условия (9), (10) необходимы и достаточны для

существования финитного наблюдателя. При этом наблюдатель можно по-
строить как в виде системы с распределенными запаздываниями и любым
конечным заданным спектром [30], так и в виде системы без распределенного
запаздывания с конечным, но не заданным спектром [31]. Для целей настоя-
щей статьи проведем модификацию одного из наблюдателей из работы [31].
В силу условия (10) найдутся [17, 22] матрицы L1(λ) ∈ R

n×l[λ] и L2(λ) ∈
∈ R

l×l[λ] такие, что справедливо тождество∣∣In+l −DL(λ)
∣∣≡ 1, DL(λ) =

[
D(λ) λL1(λ)
C(λ) λL2(λ)

]
.(15)

Пусть Π(λ) = [Πij (λ)]
2
i,j=1 – матрица, присоединенная к матрице

(In+l −DL(λ)), где Π11(λ) ∈ R
n×n[λ], Π12(λ) ∈ R

n×l[λ], Π21(λ) ∈ R
l×n[λ],

Π22(λ) ∈ R
l×l[λ]. Из (15) следует, что Π(λ) =

(
In+l −DL(λ)

)−1
. Введем

новую функцию χ(t) по формуле

χ(t) =
(
In −D(λh)

)
x(t), t � 0.(16)

Пусть χ̃(t),
(
χ̃ ∈ R

l, t ∈ R
)
– произвольная функция. Действуя на равенство[

In −D(λh) −λhL1(λh)

−C(λh) Il − λhL2(λh)

] [
x(t)

χ̃(t)

]
=

=

[
χ(t)

−y(t)

]
+

[ −λhL1(λh)χ̃(t)(
Il − λhL2(λh)

)
χ̃(t)

]
, t � 0,
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слева оператором Π(λh), доказываем соотношение

x(t) = Π11(λh)χ(t)−Π12(λh)y(t), t � γ2h,(17)

где γ2 = max{ν1j , j = 1, 2}, νij = degλΠij(λ). Введем обозначения:

Ã(λ) = A(λ)Π11(λ), C̃(λ) =

[
C(λ)Π11(λ)(

In −D(λ)
)
Π11(λ)− In

]
,

ỹ(t) = Cy(λh)y(t), t � γ3h, Cy(λ) =

[
Il + C(λ)Π12(λ)(
In −D(λ)

)
Π12(λ)

]
, γ3 = m+ γ2.

На основании (16), (17) систему (1), (2) перепишем в виде неоднородной ли-
нейной автономной дифференциально-разностной системы запаздывающего
типа с соизмеримыми запаздываниями и известным выходом ỹ :

χ̇(t) = Ã(λh)χ(t) +B(λh)u(t)−A(λh)Π12(λh)y(t), t > γ3h,(18)

ỹ(t) = C̃(λh)χ(t), t � γ3h.(19)

В силу соотношения (9) для системы (18), (19) выполнятся условие [30, 31]

rank

[
pIn − Ã(e−ph)

C̃(e−ph)

]
= n ∀p ∈ C.(20)

Из (20) следует [12], что для любого i0 ∈ {1, . . . , n+ l} найдется Vi0(λ) ∈
∈ R

n×(n+l)[λ] такая, что

rank

[
pIn − Ã(e−ph)− Vi0(e

−ph)C̃(e−ph)

c̃i0(e
−ph)

]
= n ∀p ∈ C,(21)

где c̃i0(λ) – строка матрицы C̃(λ) с номером i0. Положим

ÃV (λ) = Ã(λ) + Vi0(λ)C̃(λ), K0(λ) = −A(λ)Π12(λh)− Vi0(λ)Cy(λ).(22)

Используя уравнения (18), (19) и формулы (22), систему (1), (2) заменим
системой

χ̇(t) = ÃV (λh)χ(t) +B(λh)u(t) +K0(λh)y(t), t > t̃1,

ỹi0(t) = c̃i0(λh)χ(t), t � t̃1,
(23)

где ỹi0(t) – компонента вектора ỹ с номером i0, t̃1 = (ν0+γ3)h, ν0 = degλVi0(λ).

В силу условия (21) для системы (23) существует [31] финитный наблюда-
тель в виде системы с конечным спектром запаздывающего типа, имеющей
сугубо сосредоточенные соизмеримые запаздывания

ż(t) = Q(p
D
, λh)z(t) +K(λh)y(t) +B(λh)u(t), t > t̃1,(24)
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и выход vz, определяющий оценку решения χ системы (23),

vz(t) =
[
In, 0n×3

]
z(t), t � t̃1.(25)

Здесь z = col [z1, z2], z1 ∈R
n, z2 ∈R

3, z1 = col[z11, . . . , z1n], z2 = col[z21, z22, z23],
Q(p, λ) ∈ R

(n+3)×(n+3)[p, z], 0n×m – нулевая n×m-матрица,

B(λ) =

[
B(λ)
03×r

]
,(26)

матрица K(λ) определяется из равенства

K(λh)y(t) =

[
K0(λh)
03×l

]
y(t)− en+1ỹi0(t) =

([
K0(λh)
03×l

]
− en+1 ẽ

′
i0Cy(λh)

)
y(t),(27)

где ei, ẽi – столбцы матрицы In+3, In+l с номером i соответственно. Матрица
Q(p, λ) определяется [31] по схеме построения матрицы, задающей финитный
наблюдатель для однородной системы запаздывающего типа со скалярным
выходом. Элементы матрицы Q(p, λ) таковы, что однородная система (24) по-
сле введения вспомогательных переменных может быть записана в стандарт-
ном виде линейной автономной системы запаздывающего типа (т.е. в виде
Ẋ(t) = Σ(λh)X(t), где Σ(λ) – полиномиальная матрица), и∣∣pIn+3 −Q(p, λ)

∣∣ = d1(p),(28)

где d1(λ) – полином. Матрица Q(p, λ) имеет вид

Q(p, λ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ãV
11(λ) . . . ãV

1n(λ) g11(λ) g̃12 0
. . . . . . . . . . . . . . . . . .

ãV
n1(λ) . . . ãV

nn(λ) gn1(λ) g̃n2 0

c̃1i0(λ) . . . c̃ni0(λ) gn+11(p, λ) 1 0

0 . . . 0 λgn+21(p, λ) gn+22(p, λ) gn+23(λ)

0 . . . 0 λgn+31(λ) gn+32(λ) gn+33(λ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,(29)

где ãV
ij(λ) – элементы матрицы ÃV (λ), ÃV (λ) =

[
ãV
ij(λ)

]
n×n
, c̃ji0(λ) – элементы

вектора c̃i0(λ), c̃i0(λ) =
[
c̃1i0(λ), . . . , c̃

n
i0
(λ)
]
, gij(p, λ), gij(λ) — полиномы пере-

менных p, λ и λ соответственно, g̃i2 ∈ R.

Зам е ч а ни е 2. Пусть ρ0 = max{degpgn+21(p, λ)−degp(gn+11(p, λ)−p), 1}.
Компонента z21 зависит от выхода y. Поэтому для существования в системе
(24) слагаемого λhgn+21(pD , λh)z21 необходимо, чтобы z21 ∈ C̃ρ0

(
[t̃1,+∞),R

)
.

Значит, должно быть ỹi0 ∈ C̃ρ0
(
[t̃1,+∞),R

)
, это обеспечивается тем, что ϕ ∈

∈ C̃ρ0
(
[−mh, 0],Rn

)
.

Компоненты начальной функции z(t), t ∈ [t̃1 − h0, t̃1] (h0 – длина отрез-
ка последействия системы (24)), берутся достаточно гладкими с кусочно-не-
прерывной старшей производной (порядок старшей производной для каждой
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компоненты определяется максимальной степенью переменной p соответст-
вующих полиномов в матрице (29)). В частности, можно положить z(t) ≡ 0,
t ∈ [t0 − h0, t0].
Поясним идею выбора элементов матрицы Q(p, λ). Обозначим: ζ = vz−

−χ = z1 − χ – ошибка оценки, ζ̃ = col [ζ, z2]. Тогда из (29), (25) видно, что
вектор-функция ζ̃(t) определяется линейной автономной системой запазды-
вающего типа

˙̃ζ(t) = Q(p
D
, λh)ζ̃(t), t > t̃1.(30)

Элементы матрицы Q(p, λ) выбираются так, чтобы система (30) была точеч-
но вырожденной в направлениях, отвечающих первым n+ 2 столбцам матри-
цы In+3, т.е. в направлениях ei, i = 1, n + 2. Значит, найдется момент време-
ни t̃2 такой, что какова бы ни была начальная функция, определяющая реше-
ние системы (30), будут выполняться тождества e′iζ̃(t)≡ 0, t � t̃2, i = 1, n + 2.
Отсюда получаем, что независимо от начальных функций систем (1) и (24)
выполняется равенство

χ(t) = vz(t), t � t̃2.(31)

Оценку решения системы (1), (2) получим, используя формулу (17). По-
ложим

v(t) = Π11(λh)
[
In, 0n×3

]
z(t)−Π12(λh)y(t), t � t̃1.(32)

Из равенства (31) и формулы (17) следует, что

x(t) = v(t), t � t̃3,(33)

где t̃3 = t̃2+ν11h. Таким образом построен финитный наблюдатель (24), (32).
3. Синтез регулятора финитной стабилизации по выходу. Построим со-

отношения, которые будут определять регулятор (4). Для этого в уравне-
ниях (24) заменим управления u(t) согласно первой формуле в (11). После
этого в полученном уравнении и в соотношениях (11) переменную x выразим
через z, y согласно (33), (32). Далее переменные x̄, z обозначим как x1, x2
соответственно и запишем полученный регулятор

u(t) = R01(pD
, λh)x1(t) +R02(pD

, λh)x2(t) +R00(pD
, λh)y(t),(34)

ẋ1(t) = R11(pD
, λh)x1(t) +R12(pD

, λh)x2(t) +R10(pD
, λh)y(t),(35)

ẋ2(t) = R22(pD
, λh)x2(t) +B(λh)

(
R01(pD

, λh)x1(t) +

+R02(pD
, λh)x2(t) +R00(pD

, λh)y(t)
)
+K(λh)y(t), t > t0,

(36)

где xi ∈ R
ni , i = 1, 2 (n1 = n̄, n2 = n+ 3), – вспомогательные переменные,

t0 = α0h, α0 = max
{
degλ R00(p, λ) +m, degλR10(p, λ),degλK(λ)

}
,

Ri0(p, λ) = −Li0(p, λ)Π12(λ), Ri1(p, λ) = Li1(p, λ),

Ri2(p, λ) = Li0(p, λ)Π11(λ)
[
In, 0n×3

]
, i = 0, 1, R22(p, λ) = Q(p, λ).

(37)
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Для того чтобы записать регулятор (34)–(36) в виде (4), положим x̃ =
= col[x1, x2], U11(p, λ) = R00(p, λ), U12(p, λ) = col[R01(p, λ), R02(p, λ)],

U21(p, λ) =

[
R10(p, λ)

B(λ)R00(p, λ) +K(λ)

]
,

U22(p, λ) =

[
R11(p, λ) R12(p, λ)

B(λ)R01(p, λ) R22(p, λ) +B(λ)R02(p, λ)

]
.

Пусть êi – столбцы единичной матрицы In+n1+n2 .

Утв е ржд е ни е 1. Система (1), (2), (34)–(36) является точечно вы-
рожденной в направлениях êi, i= 1, n+n1−1, i= n+n1+1, n+n1+n2−1,
а множество ее спектральных значений и их кратность определяются кор-
нями полинома d0(λ)d1(λ).

Доказательство см. в Приложении.
Из утверждения 1 следует, что построенный регулятор (34)–(36) является

регулятором финитной стабилизации по выходу. Теорема 1 для случая ϕ ∈
∈ C̃ρ0 доказана.

3.2. Случай ϕ ∈ C̃1.

Если число ρ0 из замечания 2 равно единице, ρ0 = 1, то регулятор (34)–(36)
есть искомый регулятор финитной стабилизации и рассуждения раздела 3.2
не требуются. Далее предполагаем, что ρ0 > 1.
Регулятор финитной стабилизации по выходу будем строить в виде регуля-

тора переменной структуры (разрывной обратной связи) [33], которая будет
состоять из двух последовательно соединенных контуров: внутреннего û и
внешнего v:

u(t) =

⎧⎪⎨⎪⎩
0, t � t5,

û(t), t ∈ (t5, t6],

û(t) + v(t), t > t6.

(38)

Внутренний контур û обеспечит системе (1), замкнутой этим контуром, «сгла-
живание» решения с течением времени. После того, как решение системы бу-
дет ρ0−1 раз непрерывно-дифференцируемым и иметь кусочно-непрерывную
производную порядка ρ0, «включается» внешний контур v вида (34)–(36), ко-
торый обеспечит точечную вырожденность замкнутой системы.

Зам е ч а ни е 3. В общем случае контуры û и v в качестве аргументов
могут содержать вспомогательные переменные. Поэтому полное описание ре-
гулятора финитной стабилизации по выходу будет представлять собой соот-
ношение (38), а также дополнительные дифференциальные уравнения с на-
чальными условиями, описывающие поведение вспомогательных переменных
аналогично соотношениям (4), (5).
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Укажем условие на параметры однородной (u ≡ 0) системы (1), при выпол-
нении которого гладкость ее решения с течением времени повышается. Обо-
значим через ΠD(λ) матрицу, присоединенную к матрице

(
In −D(λ)

)
, m0 =

= degλ A(λ)ΠD(λ).

Лемма 2. Пусть для однородной (u≡ 0) системы (1) выполняется усло-
вие ∣∣In −D(λ)

∣∣≡ 1,(39)

а в начальном условии (3) ϕ ∈ C̃1. Тогда для любого ρ1 ∈ N и решения x си-
стемы (1) выполняется x ∈ C̃ρ1

(
[t4+ρ1m0h,+∞),Rn

)
, где t4 = hdegλΠD(λ).

Доказательств см. в Приложении.

Зам е ч а ни е 4. Тождество (39) эквивалентно тому, что характеристиче-
ский квазиполином системы (1) имеет вид

∣∣W (p, λ)
∣∣ = pn +

∑n−1
i=0 pid̂i(λ), где

d̂i(λ) – полиномы.

Зам е ч а ни е 5. Из доказательства леммы 2 (см. Приложение) следует,
что при выполнении (39) однородная система нейтрального типа при помощи
невырожденной замены переменных приводится к системе запаздывающего
типа, решение которой «сглаживается» с течением времени. Приведем иные
рассуждения, показывающие, что если для однородной системы нейтрально-
го типа имеет место (39), то с возрастанием времени t гладкость решения по-
вышается. Для наглядности будем предполагать, чтоD1 �= 0, Di = 0, i = 2,m,
т.е. система (1) имеет вид

ẋ(t)−D1ẋ(t− h) = A(λh)x(t), t > 0.

Тогда справедлива цепочка равенств

ẋ(t) = A(λh)x(t) +D1ẋ(t− h) =

= A(λh)x(t) +D1

(
A(λh)x(t− h) +D1ẋ(t− 2h)

)
=

= . . . =

m̃−1∑
i=0

Di
1A(λh)x(t− ih) +Dm̃ẋ(t− m̃h), t > m̃h, m̃ ∈ N.

(40)

Условие (39) в рассматриваемом случае (D1 �= 0, Di = 0, i = 2,m) имеет вид∣∣In − λD1

∣∣≡ 1. Это значит, что матрица D1 является нильпотентной. Пусть
m̃0 – индекс нильпотентности матрицы D1, D

m̃0
1 = 0. Тогда из (40) имеем

ẋ(t) =

m̃0−1∑
i=0

Di
1A(λh)x(t− ih), t > m̃0h.(41)

Система (41) есть система запаздывающего типа с m(m̃0 − 1) соизмеримыми
запаздываниями. Это говорит о том, что при t > km̃0h, k = 1, 2, . . . , гладкость
решения увеличивается на k единиц.
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Подобные рассуждения справедливы и при произвольной полиномиальной
матрице D̃(λ) (условие (39) как необходимое и достаточное для нильпотент-
ности некоторой матрицы, стоящей при производных решения, содержащих
запаздывания, обсуждается в [25, c. 218] (см. лемму 4.10)).

Лемма 3. Пусть выполняются условия (8), (10). Тогда существуют
матрицы Ũ11(λ) ∈ R

r×l[λ], Ũ12(λ) ∈ R
r×(r+n+l)[λ], Ũ21(λ) ∈ R

(n+r+l)×n[λ],
Ũ22(λ) ∈ R

(r+n+l)×(r+n+l)[λ] такие, что∣∣I2n+r+l − D̃(λ)
∣∣≡ 1,

D̃(λ)=

[
D(λ)+B(λ)Ũ11(λ)C(λ) B(λ)Ũ12(λ)

Ũ21(λ)C(λ) Ũ22(λ)

]
, D̃(0) = 0(2n+r+l)×(2n+r+l).

(42)

Доказательство см. в Приложении.
Регулятор внутреннего контура определим соотношениями

ũ(t) = p
D
Ũ11(λh)y(t) + p

D
Ũ12(λh)x3(t) + v1(t),

ẋ3(t) = p
D
Ũ21(λh)y(t) + p

D
Ũ22(λh)x3(t) + v2(t), t > t5,

(43)

где x3 ∈ R
n+r+l – вспомогательная переменная, v = col[v1, v2], матрицы Ũij(λ)

обеспечивают (42), t5 = h max
{
m+degλ Ũ11(λ), degλ Ũ21(λ)

}
. Запишем систе-

му (1), (43):

(
I2n+r+l − D̃(λ)

) [ ẋ(t)
ẋ3(t)

]
=

[
A(λh) 0n×(n+r+l)

0(n+r+l)×n 0(n+r+l)×(n+r+l)

] [
x(t)

x3(t)

]
+

+

[
B(λh) 0n×(n+r+l)

0(n+r+l)×r In+r+l

]
v(t), t > t5.

(44)

За счет условия D̃(0) = 0(2n+r+l)×(2n+r+l) система (44) имеет нейтральный
тип, а в силу (42) для нее выполняется условие леммы 2.
Зададим начальное условие x3(t) = ϕ3(t), t ∈ [t5 − h3, t5], где ϕ3 ∈ C1

(
[t5−

−h3, t5],R
n+r+l

)
– любая функция, h3 = hmax

{
degλ W̃13(λ),degλ W̃23(λ)

}
.

Для системы (44) добавим выходной сигнал

y1(t) =

[
C(λh) 0l×(n+r+l)

0(n+r+l)×n In+r+l

] [
x(t)
x3(t)

]
,(45)

где y1(t) = col[y(t), x3(t)]. Несложно убедиться, что для системы (44), (45)
выполняются условия теоремы 1.
В системе (44) полагаем v(t) = 0, t � t6. При t > t6 контур v строим по

схеме раздела 3.1, но для системы (44), (45). Число t6 выбираем таким, чтобы
выполнялось требование к гладкости решения, описанное в замечании 2.
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Зам е ч а ни е 6. В ряде случаев может оказаться, что существует полино-
миальная матрица Ũ(λ) такая, что

∣∣In − D(λ) − λB(λ)Ũ(λ)C(λ)
∣∣ ≡ 1. Тогда

для уменьшения размера матриц регулятора финитной стабилизации по вы-
ходу вместо (43) следует взять регулятор внутреннего контура в виде ũ(t) =
= p

D
Ũ(λh)y(t) + v(t). В этом случае вместо выхода (45) берем выход (3), а пе-

ременная x3 и соответствующие ей блоки в (44) будут отсутствовать (см.
пример ниже).

Прим ер 1. Продемонстрируем заложенный в доказательстве теоремы 1
способ построения регулятора финитной стабилизации вида (4) на примере
системы (1), (2) с матрицами (h = ln 2)

D(λ) =

[
λ+λ2 0
λ2 0

]
, A(λ) =

[
1− λ 1
0 0

]
, B =

[
1
1

]
, C(λ) =

[
1+λ, 0

]
.(46)

В данном случае условия теоремы 1 выполнены. Согласно замечанию 6 на-
ходим (ниже [λh

]
– матрица размера 1× 1)

ũ(t) = p
D

[
λh

]
y(t) + v(t), t > t5 = 2h.(47)

Система (44), (45) для случая (46), (47) будет иметь вид(
I2 −

[
0 0

−λh 0

])
ẋ(t) =

[
1− λh 1

0 0

]
x(t) +

+

[
1
1

]
v(t), y(t) =

[
1 + λh, 0

]
x(t), t > t5.

(48)

Эту систему интерпретируем далее как систему (1), (2) и выполняем ша-
ги 1)–3) из раздела 3.1.
1. Регулятор (11) строим согласно [22]:

v(t) =

[
−2

3
λ3
h + λ2

h +
8

3
λh − 2, −2

3
λ2
h + λh −

4

3

]
x(t) +

+

[
λ3
h −

7

2
λ2
h +

7

2
λh − 1

]
x̄(t),

˙̄x(t) =

[
−4

9
λ2
h +

10

9
λh +

8

3
,
4

9
λh +

10

9

]
x(t) +

[
2

3
λ2
h − 3λh +

7

3

]
x̄(t).

(49)

Систему (48) замкнем регулятором (49). Характеристическая матрица
W0(p, λ) (см. (14)) имеет вид

W0(p, λ) =(50)

=

⎡⎢⎢⎢⎢⎢⎣
p+ 1 +

2

3
λ3 − λ2 − 5

3
λ

2

3
λ2 − λ+

1

3
−λ3 +

7

2
λ2 − 7

2
λ+ 1

pλ+
2

3
λ3 − λ2 − 8

3
λ+ 2 p+

2

3
λ2 − λ+

4

3
−λ3 +

7

2
λ2 − 7

2
λ+ 1

4

9
λ2 − 10

9
λ− 8

3

4

9
λ− 10

9
p− 2

3
λ2 + 3λ− 7

3

⎤⎥⎥⎥⎥⎥⎦ .
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Непосредственной проверкой убеждаемся, что d0(p) = p3 − p. Для исследо-
вания точечной вырожденности можно применить, например, теорему 1.1
из [29]. Кратко проиллюстрируем этот процесс. Поскольку элементы первых
двух строк матрицы, присоединенной к матрице W0(p, e

−ph) из (50), обра-
щаются в ноль на корнях полинома d0(p), то элементы первых двух строк
матрицы

(
W0(p, e

−ph)
)−1 – целые функции. Отсюда следует [29] точечная

вырожденность в направлениях [1, 0, 0] и [0, 1, 0], т.е. имеет место (12). Макси-
мальная степень переменной λ в этих строках не превышает числа 5, поэтому
t̄1 = 5h.
2. Строим финитный наблюдатель (24), (32). В данном случае находим

DL(λ) =

⎡⎢⎢⎢⎢⎣
λ 0 −λ

2

0 0 0

1 + λ 0 −λ

2

⎤⎥⎥⎥⎥⎦ , Π(λ) =

⎡⎢⎢⎢⎣
λ

2
+ 1 0 −λ

2

0 1 0

1 + λ 0 1− λ

⎤⎥⎥⎥⎦ ,

C̃(λ) =

⎡⎢⎢⎢⎢⎣
λ2

2
+

3

2
λ+ 1 0

−λ2

2
− λ

2
0

0 0

⎤⎥⎥⎥⎥⎦ , Cy(λ) =

⎡⎢⎢⎢⎢⎣
−λ2

2
+

λ

2
+ 1

λ2

2
− λ

2
0

⎤⎥⎥⎥⎥⎦ ,

V2(λ) =

[
0 −1 0
0 0 0

]
, (i0 = 2).

Система (23) принимает вид

χ̇(t) =

[
1 1
0 0

]
χ(t) +

[
1
1

]
u(t), ỹ2(t) =

[
−λ2

h

2
− λh

2
, 0

]
χ(t).(51)

Используя (51), окончательно получаем соотношения (24), (32):

ż(t) = Q(pD, λh)z(t) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0

−λ2
h

2
+

λh

2
0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
y(t) +

⎡⎢⎢⎢⎢⎣
1
1
0
0
0

⎤⎥⎥⎥⎥⎦u(t),

x(t) =

[ λh

2
+ 1 0

0 1

]
z1(t) +

⎡⎣ λh

2
0

⎤⎦ y(t).
Выпишем элементы матрицы Q(p, λ), расположенные в блоках с номерами
(1,2), (2,2) (вид остальных элементов очевиден):

g11(λ) = 0, g21(λ) = 0, g31(p, λ) = −1,
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g41(p, λ) =
428 259 827 248

370 825 875
+

13 308 418

37 975
p+

3263 970 139

410 130
pλ2−

− 64 061 677 864 590 419

683 506 252 800
λ7 − 4 504 350 207 517

370 825 875
λ+

10314 197

36 325 800
λ14+

+
109 094 554 247 916 287

683 506 252 800
λ6 − 17 328 104 121 953 0591

854 382 816 000
λ5−

− 5 199 361 041 200 909

379 725 696 000
λ9 +

47137 018 631 639 513

1 139 177 088 000
λ8+

+
1145 930 623 773 433

341 753 126 400
λ10 − 3631

605 430
λ15 − 21 985 862 341

3 645 600
pλ5+

+
460 650 668 593

43 747 200
pλ4 − 154 784 798 249

13 124 160
pλ3 +

255 035 489 398

4 944 345
λ2+

+
3925 747 081

1 749 888
pλ6 − 90 876 950 917

15 256 836 000
λ13 − 1 159 012 171

2 187 360
pλ7−

− 1 743 623 839 315 721

14 239 713 600
λ3 +

30878

315
p2 +

222 361

2520
p2λ4−

− 433 453

1008
p2λ3 +

819 967

1008
p2λ2 − 718 133

1260
p2λ− 3 824 219 437

1 367 100
pλ−

− 3631

630
p2λ5 +

160 864 251 357 763 979

854 382 816 000
λ4 − 101 487 682 282 697

170 876 563 200
λ11−

− 3 412 403

585 900
pλ9 +

3631

19 530
pλ10 +

2474 356 747

32 810 400
pλ8+

+
4478 040 783 667

61 027 344 000
λ12,

g51(λ) = − 7 991 397 801 907 001

3 218 768 595 000
λ+

430 769 061 660 938 381

51 500 297 520 000
λ4−

− 90 522 930 353 255 419

794 576 018 880 000
λ9 +

7882 042 993 003 211

397 288 009 440 000
λ10+

+
38819 644 979 750 780 339

11 124 064 264 320 000
λ6 +

5294 886 380 912 311 157

11 124 064 264 320 000
λ8−

− 16 491 589 988 451 048 767

11 124 064 264 320 000
λ7 − 2 550 527 148 568 185 769

309 001 785 120 000
λ3−

− 68 686 980 782 797

28 377 714 960 000
λ11 +

440 289 519 864 500 737

77 250 446 280 000
λ2−

− 7 699 195 015 471 454 567

1 236 007 140 480 000
λ5 +

3631

18 768 330
λ14 − 384 159

41 707 400
λ13+

+
30684 351 847

157 653 972 000
λ12 +

23072 498 192 986

44 705 119 375
,

g̃12 = 0, g̃22 = 2,
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g42(p, λ) = − 22 963 886

1 177 225
− 6049

1085
p− p2 − 237 550 583

1 367 100
λ− 113 747

1260
pλ+

+
1277 029 067

607 600
λ2 +

1419 991

2520
pλ2 − 1 644 438 853

234 360
λ3 − 817 177

1008
pλ3+

+
92476 221 137

8 202 600
λ4 +

2164 661

5040
pλ4 − 14 100 715 427 003

1 356 163 200
λ5−

− 6 890 671

78 120
pλ5 +

131 464 618 651

21 873 600
λ6 +

3631

630
pλ6 − 3 920 013 073

1 749 888
λ7+

+
1930 062 779

3 645 600
λ8 − 2 473 263 067

32 810 400
λ9 +

105 765 593

18 162 900
λ10 − 3631

19 530
λ11,

g52(λ) =− 36 874 722 147

5 109 156 500
− 2 362 315 264 557

20 436 626 000
λ+

20884 081 349 269

61 309 878 000
λ2−

− 538 059 413 076 769

1 103 577 804 000
λ3 +

1793 665 758 154 211

4 414 311 216 000
λ4−

− 1 445 125 981 988 557

6 621 466 824 000
λ5 +

1026 288 639 816 701

13 242 933 648 000
λ6−

− 8 405 817 164 119

472 961 916 000
λ7 +

1174 407 170 347

472 961 916 000
λ8 − 106 666 081

563 049 900
λ9+

+
3631

605 430
λ10,

g43(λ) = −63

4
λ5 +

651

8
λ4 − 1395

8
λ3 +

651

4
λ2 − 63λ+ λ6 + 8,

g53(λ) = − 1

31
λ5 +

31

60
λ4 − 155

56
λ3 +

155

24
λ2 − 31

4
λ+

3879

1085
.

В данном случае d1(p) = (p− 2)(p − 1)p(p + 1)(p + 2)(p + 3) (см. (28)). Ис-
пользуя теорему 1.1 из [29], убеждаемся, что у системы (30) вырождаются
первые 4 компоненты.
3. Теперь выпишем для системы (48) матрицы регулятора финитной ста-

билизации (34)–(36):

R00(p, λ) =
[
− 1

3
λ4 +

1

2
λ3 +

4

3
λ2 − λ

]
; R01(p, λ) =

[
λ3 − 7

2
λ2 +

7

2
λ− 1

]
;

R02(p, λ) =
[
− 1

3
λ4 − 1

6
λ3 +

7

3
λ2 +

5

3
λ− 2,−2

3
λ2 + λ− 4

3
, 0, 0, 0

]
;

R10(p, λ) =
[
− 2

9
λ3 +

5

9
λ2 +

4

3
λ
]
; R11(p, λ) =

[2
3
λ2 − 3λ+

7

3

]
;

R12(p, λ) =
[
− 2

9
λ3 +

1

9
λ2 +

22

9
λ+

8

3
,−4

9
λ+

10

9
, 0, 0, 0

]
;

R22(p, λ) = Q(p, λ); K(λ) = col
[
0, 0,

1

2
λ2 − 1

2
λ, 0, 0

]
.
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Составим характеристическую матрицу W1(p, λ) замкнутой системы (48),
(34)–(36) (см. доказательство утверждения 1). Непосредственной проверкой
убеждаемся, что

∣∣W1(p, λ)
∣∣ = d1(p)d0(p). Используя теорему 1.1 из работы [29]

проверяем, что у системы (48), (34)–(36) вырождаются компоненты с номера-
ми 1, 2, 4–7 за время, равное 16h (16 — максимальная степень переменной λ
полиномов, являющихся элементами матриц регулятора (4)). На этом вы-
полнение шага 3) завершается. В данном случае ρ0 = 2, в лемме 2 полагаем
ρ1 = 2, t4 = 4h, после чего видим, что можно взять t6 = t5 + t4 + 4h = 10h,
поскольку m0 = 2 (см. лемму 2). Окончательно регулятор финитной стаби-
лизации по выходу определяется формулой (38), а в тождестве (6) можно
положить t1 = t6 + 16h = 26h.

4. Заключение

В работе получен критерий существования и предложен метод синтеза ре-
гулятора финитной стабилизации по выходу. Условия (7), (8) представляют
собой [25, c. 206; 32] критерий полной 0-управляемости системы (1), (2) (кри-
терий полного успокоения системы). Условия (9), (10) есть [25, c. 204; 32]
критерий финальной наблюдаемости системы (1), (2) – существование одно-
значного непрерывного оператора восстановления состояния системы (1) по
прошлому выходу (2). Таким образом, регулятор финитной стабилизации по
выходу существует тогда и только тогда, когда система (1), (2) одновременно
полностью 0-управляема и финально наблюдаема. В основе процедуры по-
строения регулятора финитной стабилизации по выходу лежат методы про-
ектирования регуляторов и наблюдателей [22, 25, 31], которые базируются
на алгебраических операциях, реализованных в большинстве современных
систем компьютерной математики. Это обстоятельство позволяет автомати-
зировать при разработке систем автоматического управления необходимые
вычислительные процедуры, заложенные в работе.

ПРИЛОЖЕНИЕ

Дока з а т е л ь с т в о л еммы 1. Если для любой начальной функции ϕ
в (3) существует управление u (программное или в виде обратной связи),
обеспечивающее (6), то система (1) является полностью 0-управляемой. От-
сюда следует [32] необходимость условий (7), (8). Докажем необходимость
условия (9). Считаем, что существует регулятор финитной стабилизации по
выходу (4). Предположим противное, условие (9) нарушается при некото-
ром p0 ∈ C. Выберем вектор g0 ∈ C

n как решение алгебраической системы
W (p0, e

−p0h)g0 = 0, C(e−p0h)g0 = 0. Определим функцию xp0(t) = Re
(
g0e

p0t
)
,

t � −mh, если она не равна нулю, или xp0(t) = Im
(
g0e

p0t
)
, t � −mh, в про-

тивном случае.
Регулятор (4) обеспечивает тождество (6) независимо от начальных усло-

вий (3) и (5). Положим в (3) и (5) соответственно ϕ(t) = xp0(t), t ∈ [−mh, 0],
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ϕ̃(t) = 0, t ∈ [t0 − h̃, t0]. Выпишем характеристическую матрицу систе-
мы (1), (4) (e−ph = λ)

W1(p, λ) =

[
W (p, λ)−B(λ)U11(p, λ)C(λ) −B(λ)U12(p, λ)

−U21(p, λ)C(λ) pIñ − U22(p, λ)

]
.(Π.1)

Из (Π.1) следует, что функция col[xp0(t), 0], t > t0, есть ненулевое решение
замкнутой системы (1), (4). Это противоречит (6).
Докажем необходимость условия (10). По определению регулятора фи-

нитной стабилизации по выходу спектр системы конечен,
∣∣W1(p, λ)

∣∣ = w(p),
w(p) – полином. Введем вспомогательную систему(

In − Φ0(λh)
)
ξ̇(t) = Φ(λh)ξ(t) + Ψ(λh)ū(t), t > 0,(Π.2)

где Φ0(λ) =
(
D(λ)

)′, Φ(λ) = (A(λ))′, Ψ(λ) =
(
C(λ)

)′
, ū – кусочно-непрерыв-

ное управление. Начальные условия для системы (Π.2) выбираются анало-
гично начальным условиям (3).
Для системы (Π.2) определим регулятор

ū(t) = H11(pD
, λh)ξ(t) +H12(pD

, λh)x̃(t),

˙̃x(t) = H21(pD
, λh)ξ(t) +H22(pD

, λh)x̃(t),
(Π.3)

гдеHi1(p, λ) =
(
B(λ)U1i(p, λ)

)′,Hi2(p, λ) =
(
U2i(p, λ)

)′, i = 1, 2. Обозначим че-
рез Wξ(p, λ) характеристическую матрицу системы (Π.2), (Π.3). Легко ви-
деть, что Wξ(p, λ) =

(
W1(p, λ)

)′, поэтому ∣∣Wξ(p, e
−ph)
∣∣ = w(p). Таким обра-

зом получили, что для системы (Π.2) существует обратная связь такая,
что замкнутая система имеет конечный (но не наперед заданный) спектр,
т.е. является спектрально приводимой. Поэтому [15] выполняется условие
rank
[
In − Φ0(λ), Ψ(λ)

]
= n ∀λ ∈ C, которое равносильно (10). Лемма 1 дока-

зана.

Дока з а т е л ь с т в о у т в е ржд е ни я 1. Выпишем характеристическую
матрицу W1(p, e

−ph) системы (1), (2), (34)–(36) (λ = e−ph):

(Π.4) W1(p, λ) =

=

⎡⎢⎣W (p, λ)−B(λ)R00(p, λ)C(λ) −B(λ)R01(p, λ) −B(λ)R02(p, λ)

−R10(p, λ)C(λ) pIn1 −R11(p, λ) −R12(p, λ)

−(K(λ)+B(λ)R00(p, λ))C(λ) −B(λ)R01(p, λ) pIn2−R22(p, λ)−B(λ)R02(p, λ)

⎤⎥⎦.
Представим переменную x2 в соотношениях (34)–(36) как вектор, состоя-

щий из двух векторных компонент: x2 = col[x21, x22], x21 ∈ R
n, x22 ∈ R

3, а
матрицы Ri2(p, λ), i = 1, 2, и K(λ) в (37) разобъем на блоки, отвечающие
компонентам x21, x22, и запишем их в подробном виде:

R02(p, λ) =
[
L00(p, λ)Π11(λ), 0r×3

]
, R12(p, λ) =

[
L10(p, λ)Π11(λ), 0n1×3

]
,

R22(p, λ) =

[
A(λ)Π11(λ)+Vi0(λ)C̃(λ) Q12(p, λ)

Q21(p, λ) Q22(p, λ)

]
, K(λ)=

[
K0(λ)

−K1(λ)

]
.

(Π.5)
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Здесь вид блоков Q12(p, λ) ∈ R
n×3[λ], Q21(p, λ) ∈ R

3×n[λ], Q22(p, λ) ∈ R
3×3[λ]

соответствует разбиению на блоки матрицы Q(p, λ) в (29) (первый верх-
ний блок матрицы (29) есть матрица AV (λ), описанная в (22)), K1(λ) =
= col[1, 0, 0]ẽ′i0Cy(λ) (см. (27)).

Зам е ч а ни е 7. Ниже необходимо будет выписать матрицы, разбитые на
блоки. Для того чтобы уместить их по ширине страницы и тем самым сде-
лать рассуждения более наглядными, в обозначениях блоков матриц в ряде
случаях будем опускать аргументы. Например, записи типа B, L00Π11 и т.п.
будут обозначать соответственно B(λ), L00(p, λ)Π11(λ) и т.п.

С учетом разбиения на блоки (Π.5), определения матриц K0(λ) и B(λ) по
формулам (22), (26) перепишем матрицу (Π.4):

(Π.6) W1(p, λ) =

=

⎡⎢⎢⎣
W +BL00Π12C −BL01 −BL00Π11 0n×3

L10Π12C pIn1 −L11 −L10Π11 0n1×3

BL00Π12C +(AΠ12+Vi0Cy)C −BL01 pIn−AΠ11−Vi0
˜C −BL00Π11 −Q12

K1C 03×n1 −Q21 pI3−Q22

⎤⎥⎥⎦ .
В системе (1), (2), (34)–(36) введем новую переменную ε согласно формуле

x21(t) =
(
In −D(λh)

)
x(t) + ε(t), t � t0.(Π.7)

Замену переменных (Π.7) можно определить формулами⎡⎢⎢⎢⎣
x(t)

x1(t),

x21(t)

x22(t)

⎤⎥⎥⎥⎦ = Ω(λh)

⎡⎢⎢⎢⎣
x(t)

x1(t),

ε(t)

x22(t)

⎤⎥⎥⎥⎦ ,

Ω(λ) =

⎡⎢⎢⎢⎣
In 0n×n1 0n×n 0n×3

0n1×n In1 0n1×n 0n1×3

In −D(λ) 0n×n1 In 0n×3

03×n 03×n1 03×n I3

⎤⎥⎥⎥⎦ ,
∣∣Ω(λ)∣∣≡ 1.

Из этих формул видно, что матрица W1(p, λ)Ω(λ) будет характеристической
матрицей, полученной после замены системы, и

∣∣W1(p, λ)
∣∣ = ∣∣W1(p, λ)Ω(λ)

∣∣.
Для дальнейших преобразований матрицы W1(p, λ)Ω(λ) получим неко-

торые соотношения. Предварительно заметим, что из определения мат-
риц Πij(λ) имеем

Π11(λ)
(
In −D(λ)

)
−Π12(λ)C(λ) = In.(Π.8)
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Далее в матрице (Π.6) к блоку с номером (3,1) прибавим блок с номером (3,3),
предварительно умноженный на матрицу

(
In −D(λ)

)
справа. Использовав

формулу (Π.8), выпишем следующую цепочку равенств:

B(λ)L00(p, λ)Π12(λ)C(λ) +
(
A(λ)Π12(λ) + Vi0(λ)Cy(λ)

)
C(λ) +

+
(
pIn −A(λ)Π11(λ) − Vi0(λ)C̃(λ)−B(λ)L00(p, λ)Π11(λ)

)(
In −D(λ)

)
=

= B(λ)L00(p, λ)Π12(λ)C(λ) +A(λ)Π12(λ)C(λ) +

+Vi0(λ)

[ (
Il + C(λ)Π12(λ)

)
C(λ)(

In −D(λ)
)
Π12(λ)C(λ)

]
+ p
(
In −D(λ)

)
−

−A(λ)Π11(λ)
(
In−D(λ)

)
−Vi0 (λ)

⎡⎣ C(λ)Π11(λ)
(
In −D(λ)

)((
In−D(λ)

)
Π11(λ)− In

)(
In−D(λ)

)
⎤⎦−

−B(λ)L00(p, λ)Π11(λ)
(
In−D(λ)

)
=−B(λ)L00(p, λ)+p

(
In−D(λ)

)
−A(λ) +

+Vi0(λ)

⎡⎣ C(λ) + C(λ)
(
Π12(λ)C(λ) −Π11(λ)

(
In −D(λ)

))(
In −D(λ)

)(
Π12(λ)C(λ) −Π11(λ)

(
In −D(λ)

))
+
(
In −D(λ)

)
⎤⎦ =

= W (p, λ) −B(λ)L00(p, λ).

(Π.9)

Затем в матрице (Π.6) к первой строке блока с номером (4,1) прибавим
первую строку блока с номером (4,3), умноженную на матрицу

(
In −D(λ)

)
справа (заметим, что оставшиеся две нижних строки указанных выше блоков
являются нулевыми, это следует из (29) и вида матрицы K1(λ)). Используя
промежуточные рассуждения в цепочке равенств (Π.9), имеем следующее со-
отношение:

[1, 0, 0]K1(λ)C(λ)− [1, 0, 0]Q21(p, λ)
(
In −D(λ)

)
=(Π.10)

= ẽ′i0

([(
Il + C(λ)Π12(λ)

)
C(λ)(

In −D(λ)
)
Π12(λ)C(λ)

]
−

−
[

C(λ)Π11(λ)
(
In −D(λ)

)((
In −D(λ)

)
Π11(λ)− In

)(
In −D(λ)

)]) = 0.

Использовав формулу (Π.8) и соотношения (Π.9), (Π.10), видим, что

W1(p, λ)Ω(λ) =

=

⎡⎢⎢⎢⎣
W −BL00 −BL01 −BL00Π11 0n×3

−L10 pIn1 − L11 −L10Π11 0n1×3

W −BL00 −BL01 pIn −AΠ11 − Vi0C̃ −BL00Π11 −Q12

03×n 03×n1 −Q21 pI3 −Q22

⎤⎥⎥⎥⎦ .
В матрице W1(p, λ)Ω(λ) умножим первую строку блоков на (−1) и прибавим
к третьей, полученным результатом заменим третью строку блоков. Матри-
цу, определяющую данное преобразование, обозначим через Ω1. Очевидно,
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что
∣∣Ω1

∣∣ = 1 и

Ω1W1(p, λ)Ω(λ) =(Π.11)

=

⎡⎢⎢⎢⎢⎣
W −BL00 −BL01 −BL00Π11 0n×3

−L10 pIn1 − L11 −L10Π11 0n1×3

0n×n 0n×n1 pIn −AΠ11 − Vi0C̃ −Q12

03×n 03×n1 −Q21 pI3 −Q22

⎤⎥⎥⎥⎥⎦ =

=

[
W0(p, λ) W̃ (p, λ)

0(n+1)×(n+n1) pIn+3 −Q(p, λ)

]
,

где блок W̃ (p, λ) определяется очевидным образом. Из структуры матри-
цы (Π.11) видно, что функция col[ε, x22] определяется системой с харак-
теристической матрицей In+3 −Q(p, λ), (т.е. системой вида (30), которая,
напомним, является точечно вырожденной). Поэтому e′icol[ε(t), x22(t)]≡ 0,
t � t0 + t̃2, i = 1, n+ 2. Значит, при t � t̄4, имеем t̄4 = t0 + t̃2 + γ5h, где γ5 –
максимальная степень переменной λ в блоке W̃ (p, λ), функция col[x, x1] опре-
деляется однородной системой с характеристической матрицей (14), которая
также является точечно вырожденной. Поэтому при t1 = t̄1 + t̄4, где t̄1 опре-
делено в (12), имеют место тождества ē′icol[x(t), x1(t)]≡ 0, t � t1. Отсюда и
из (Π.7) следует точечная вырожденность системы (1), (2), (34)–(36).
Из вида матрицы Ω1W1(p, λ)Ω(λ) в (Π.11) и равенств (28), (13) следует,

что собственные значения системы (1), (2), (34)–(36) определяются корнями
полинома d1(λ)d0(λ). Утверждение 1 доказано.

Дока з а т е л ь с т в о л еммы 2. В системе (1) введем новую переменную
X(t) =

(
In −D(λh)

)
x(t), t � 0. Тогда x(t) = ΠD(λh)X(t), t � hdegλ ΠD(λ), и

функция X(t) определяется системой запаздывающего типа

Ẋ(t) = A(λh)ΠD(λh)X(t), t > hm0.(Π.12)

Известно, что гладкость решения системы запаздывающего типа (Π.12) с уве-
личением времени на величину m0h увеличивается на единицу. Поэтому для
заданного ρ1 при t � m0h+ (ρ1 − 1)m0h = ρ1m0h функция X(t) такова, что
X ∈ C̃ρ1

(
[ρ1m0h,+∞),Rn

)
. Отсюда следует справедливость доказываемого

утверждения. Лемма доказана.
Доказательство леммы 3. В силу условия (10) найдутся [15; 25, c. 228]

полиномиальные матрицы Mij(λ), Kij(λ) подходящих размеров такие, что∣∣∣∣∣In −D(λ)− λB(λ)M11(λ) −λB(λ)M12(λ)

−λM21(λ) Ir − λM22(λ)

∣∣∣∣∣≡ 1,

∣∣∣∣∣In −D(λ)− λK11(λ)C(λ) −λK12(λ)

−λK21(λ)C(λ) Il − λK22(λ)

∣∣∣∣∣≡ 1.

(Π.13)
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Определим матрицы

Ũ11(λ) = 0r×n, Ũ12(λ) =
[
λM12(λ), λM11(λ), 0n×l

]
,

Ũ21(λ) =

⎡⎢⎣ 0(r×n)

−λK11(λ)

−λK21(λ)

⎤⎥⎦ ,

Ũ22(λ) =

⎡⎢⎣ λM22(λ) λM21(λ) 0r×l

λB(λ)M12(λ) D(λ) + λK11(λ)C(λ) + λB(λ)M11(λ) λK12(λ)

0l×r λK21(λ)C(λ) λK22(λ)

⎤⎥⎦ .
Заметим, что Ũij(0) – нулевые матрицы. Обозначим:

Γ(λ) = E
(
I2n+r+l − D̃(λ)

)
E−1, где E =

⎡⎢⎢⎣
In 0n×r 0n×n 0n×l

0r×n Ir 0r×n 0r×l

−In 0n×r In 0n×l

0l×n 0l×r 0l×n Il

⎤⎥⎥⎦ .
Непосредственной проверкой убеждаемся, что

Γ(λ) =

=

⎡⎢⎢⎣
In −D(λ)− λB(λ)M11(λ) −λB(λ)M12(λ) −λB(λ)M11(λ) 0n×l

−λM21(λ) Ir − λM22(λ) −λM21(λ) 0r×l

0n×n 0n×r In −D(λ)− λK11(λ)C(λ) −λK12(λ)

0l×n 0l×r −λK21(λ)C(λ) Il − λK22(λ)

⎤⎥⎥⎦ .
Учитывая тождества (Π.13), заключаем, что

∣∣Γ(λ)∣∣≡ 1. Отсюда следует (42).
Лемма доказана.
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ных гамильтоновых систем для линейных и нелинейных уравнений Лурье
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1. Введение

Рассматривается дифференциальное уравнение

L

(
d

dt

)
y = M

(
d

dt

)
f(y),(1)

в котором

L(p) = p2n + a1p
2n−2 + a2p

2n−4 + . . .+ an−1p
2 + an,

M(p) = b0p
2m + b1p

2m−2 + . . .+ bm−1p
2 + bm,

– взаимно простые многочлены (0 � m < n), а f(y) – скалярная непрерывная
функция. Уравнение (1) описывает (см., например, [1, 2]) динамику однокон-
турной системы управления, состоящей из линейного звена с дробно-рацио-
нальной передаточной функцией W (p) = M(p)/L(p) и нелинейной обратной
связи с характеристикой f(y). Отметим, что уравнения вида (1) часто назы-
вают уравнениями Лурье.

1 Авторы благодарны профессорам Э.М. Мухамадиеву и А.Б. Назимову за полезное
обсуждение рассмотренных в настоящей статье вопросов. Это обсуждение состоялось в
октябре 2022 г. в г. Уфе в период проведения международной конференции “Уфимская
осенняя математическая школа” при финансовой поддержке Научно-образовательного ма-
тематического центра Приволжского федерального округа и ООО “ВинТех”.
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Многочлены L(p) и M(p) содержат степени только четных порядков.
К дифференциальным уравнениям четных порядков приводят многие зада-
чи теории управления, теории гамильтоновых систем, теории интегрируемых
уравнений, спектральной теории и др. Важным направлением исследования
таких уравнений является задача о введении на них гамильтоновой структу-
ры. Наличие такой структуры и, как следствие, существование первых инте-
гралов и различных типов симметрий позволяет существенно продвинуться
в задаче изучения динамики системы. Вопросы о наличии гамильтоновой
структуры для многих типов дифференциальных уравнений и соответствен-
но вопросы конструирования для уравнений вида (1) эквивалентной гамиль-
тоновой системы в различных постановках обсуждались в ряде работ (см.,
например, [2–9]). Постановки задач, рассмотренных в настоящей статье, близ-
ки к постановкам задач, изученных в [10, 11].
В настоящей работе предлагаются новые подходы к изучению указанных

вопросов. Предлагаемые подходы основаны на переходе от линейной части
уравнения Лурье к нормальным формам соответствующих гамильтоновых
систем с последующим преобразованием линейной и нелинейной систем. По-
лученные результаты приводят к эффективным алгоритмам построения га-
мильтониана системы. Результаты могут найти приложения в задачах иссле-
дования динамики систем, описываемых дифференциальными уравнениям
четных порядков, в задачах исследования устойчивости и бифуркаций то-
чек равновесия и периодических решений линейных и нелинейных уравнений
Лурье.

2. Вспомогательные сведения

Приведем некоторые понятия теории систем, теории управления (см., на-
пример, [1, 2, 7, 8]) и теории гамильтоновых систем (см., например, [3, 4]).

2.1. Эквивалентность систем
Пусть A и B – это две системы, описываемые уравнениями вход–выход–

состояние. Пусть эти системы обладают одним и тем же пространством U
входов u(t) и одним и тем же пространством Y выходов y(t). Пусть S и T –
это пространства состояний систем A и B соответственно.
Системы A и B называют эквивалентными, если для каждого состояния

α ∈ S найдется состояние β ∈ T так, что при одинаковых входах u(t) ∈ U
выходы системA и B совпадут, и наоборот. В этом случае будем писатьA ∼ B.

2.2. О наблюдаемости систем
Рассмотрим систему, динамика которой описывается уравнением

x′ = Ax+ ξu(t), y = (x(t), c),(2)

в котором A – квадратная (порядка n) матрица, ξ, c ∈ Rn – фиксированные
векторы, а символ (x, c) обозначает скалярное произведение векторов x и c
из Rn. В этой системе u – вход, y – выход, x – состояние.
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Здесь и всюду ниже векторы будут рассматриваться как векторы-столбцы,
если только прямо не оговорено, что они в данной формуле рассматриваются
как векторы-строки.
Определим квадратную (порядка n) матрицу

D =

⎡⎢⎢⎢⎢⎢⎣
c

A∗c
(A∗)2c
...

(A∗)n−1c

⎤⎥⎥⎥⎥⎥⎦ ,(3)

где A∗ – транспонированная матрица, а векторы c, A∗c, (A∗)2c, . . . , (A∗)n−1c
рассматриваются как вектор-строки. Матрица D называется матрицей на-
блюдаемости системы (Π.3). Система (Π.3) называется наблюдаемой, если
detD �= 0.

2.3. О гамильтоновых системах

Автономной гамильтоновой системой называют динамическую систему,
описываемую уравнением

x′ = J∇H(x), x ∈ R2n,(4)

в котором

J =

[
0 I
−I 0

]
, ∇H(x) =

(
∂H

∂x1
, . . . ,

∂H

∂x2n

)T

;(5)

здесь 0 и I – это соответственно нулевая и единичная (порядка n) матрицы,
H(x) – скалярная вещественная гладкая функция, называемая гамильто-
нианом системы (4).
Линейной автономной гамильтоновой системой (ЛАГС) называют си-

стему вида

dx

dt
= JAx, x ∈ R2n,(6)

в которой A – вещественная квадратная симметрическая (порядка 2n) мат-
рица. Гамильтониан этой системы равен

H(x) =
1

2
(Ax, x).(7)

Ниже участвующую в системе (6) матрицу JA будем называть гамильто-
новой. Отметим следующие свойства гамильтоновой матрицы JA:
G1) если матрица JA имеет собственное значение λ, то числа −λ, λ, −λ

также являются собственными значениями этой матрицы, причем той
же алгебраической и геометрической кратности и того же индекса;

G2) если матрица JA имеет собственное значение λ = 0, то алгебраическая
кратность этого собственного значения является четным числом;
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G3) характеристический многочлен матрицы JA содержат степени только
четных порядков.

Отметим также, что каждая гамильтонова матрица входит в один и только
один класс эквивалентности симплектически подобных матриц. При этом в
каждом таком классе выделяют одного представителя, называемого нормаль-
ной формой. Вид нормальной формы определяется свойствами корневых под-
пространств матрицы JA. Более детально с теорией нормальных форм и в
частности со списками нормальных форм можно познакомиться в [3, 9, 12, 13].
Одной из специфик нормальных форм является то, что данному набору

собственных значений с данными кратностями могут соответствовать различ-
ные нормальные формы. Для иллюстрации этого рассмотрим гамильтоновы
матрицы четвертого порядка, имеющие две пары простых чисто мнимых соб-
ственных значений ±ω1i и±ω2i (здесь ω1 > 0 и ω2 > 0). В этом случае имеется
два вида нормальных форм:

JA =

⎡⎢⎢⎣
0 0 ω1 0
0 0 0 σω2

−ω1 0 0 0
0 −σω2 0 0

⎤⎥⎥⎦ ; здесь σ = 1 или σ = −1.(8)

В случае σ = 1 говорят о том, что числа ω1i и ω2i являются собственными
значениями первого рода, а при σ = −1 – собственными значениями первого
и второго рода соответственно. Отметим, что не существует симплектических
преобразований, переводящих нормальную форму при σ = 1 в нормальную
форму при σ = −1.
Указанные свойства гамильтоновых матриц определяют многие важные

качественные характеристики гамильтоновых систем (линейных и нелиней-
ных), такие как свойства сильной устойчивости, устойчивость в линейной и
нелинейной постановке и др. (см., например, [9–15]).
Как будет показано ниже, отмеченный факт может приводить к тому, что

задача конструирования эквивалентной гамильтоновой системы для уравне-
ния (1) может иметь качественно различные решения, а именно, приводить
к гамильтоновым системам вида (6) с различными нормальными формами.

3. Линейная задача

3.1. Стандартная замена

Обсудим задачу конструирования эквивалентной гамильтоновой системы
сначала для линейного уравнения

L

(
d

dt

)
y = 0.(9)

Это уравнение стандартной заменой

z1 = y, z2 = y′, . . . , z2n = y(2n−1)(10)
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сводится к эквивалентной системе в пространстве состояний

z′ = A0z, y = (z, c0),(11)

в которой z, c0, γ ∈ R2n, символ (z, c0) обозначает скалярное произведение
векторов,

A0 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0

. . .
0 0 0 0 . . . 0 1

−an 0 −an−1 0 . . . −a1 0

⎤⎥⎥⎥⎥⎥⎦ , c0 =

⎡⎢⎢⎢⎢⎢⎣
1
0
...
0
0

⎤⎥⎥⎥⎥⎥⎦ .(12)

Система (11) является гамильтоновой только при n = 1, т.е. когда уравне-
ние (9) является простейшим вида y′′ + a1y = 0. При n � 2 система (11) уже
не является гамильтоновой. Ниже всюду будем предполагать, что n � 2.

3.2. Построение гамильтоновой системы

Так как многочлен L(p) содержит степени только четных порядков, то
корни уравнения L(p) = 0 обладают свойствами, аналогичными свойствам
G1 и G2 гамильтоновых матриц. Поэтому многочлену L(p) с данным набо-
ром корней можно поставить в соответствие одну или несколько нормальных
форм с тем же набором собственных значений.
Предлагается следующая схема конструирования для уравнения (9) экви-

валентной гамильтоновой системы.
На первом этапе по корням уравнения L(p) = 0 определяются возможные

варианты нормальных форм искомой гамильтоновой системы. Выбирается
одна из соответствующих гамильтоновых матриц JA.
На втором этапе задается ненулевой вектор c ∈ R2n и гамильтонова

система
dx

dt
= JAx, y = (x(t), c).(13)

Те ор ем а 1. Уравнение (9) и гамильтонова система (13) эквивалентны
тогда и только тогда, когда система (13) наблюдаема.
Эта теорема может быть дополнена следующим утверждением. Положим

ỹ =

⎡⎢⎢⎢⎣
y
y′
...

y(2n−1)

⎤⎥⎥⎥⎦. Здесь y(k) – это производные заданной скалярной функции

y = y(t).

Те ор ем а 2. Пусть в соответствии со свойствами корней уравнения
L(p) = 0 выбрана одна из возможных нормальных форм JA. Пусть век-
тор c выбран таким образом, что система (13) наблюдаема. Тогда заме-
на x = D−1ỹ (здесь D – матрица наблюдаемости системы (13)) приводит
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уравнение (9) к эквивалентной гамильтоновой системе (13) с гамильтони-
аном (7). При этом матрицы A0 и JA связаны равенством A0 = D(JA)D−1.

Доказательства теорем 1 и 2, а также других основных утверждений вы-
несены в Приложение.

Зам е ч а ни е 1. В соответствии с теоремами 1 и 2 задача построения для
уравнения (9) эквивалентной гамильтоновой системы в нормальной форме
может иметь более одного решения. Другими словами, уравнение (9) линей-
ными невырожденными преобразованиями может сводиться к качественно
различным гамильтоновым системам вида (13) в том смысле, что соответ-
ствующие гамильтоновы матрицы входят в разные классы эквивалентности
симплектически подобных матриц.
Отметим также, что задача построения для уравнения (9) эквивалентной

гамильтоновой системы с конкретной нормальной формой может не иметь ре-
шения. Такая ситуация возникает, например, когда уравнение L(p) = 0 имеет
кратные корни. В этом случае уравнению (9) могут соответствовать такие
варианты нормальных форм гамильтоновых матриц, для которых соответ-
ствующая система не является наблюдаемой при любом векторе c.

3.3. Линейное звено с двумя степенями свободы

В качестве иллюстрации рассмотрим уравнение Лурье четвертого порядка

y′′′′ + ay′′ + by = 0,(14)

в котором вещественные коэффициенты a и b удовлетворяют условиям

a > 0, b > 0, d = a2 − 4b > 0.(15)

В этом случае все четыре корня характеристического уравнения

λ4 + aλ2 + b = 0

различны и являются чисто мнимыми вида ±iω1, ±iω2, где числа ω1 > 0 и
ω2 > 0 являются корнями уравнения ω4 − aω2 + b = 0, т.е.

ω2
1 =

a+
√
d

2
, ω2

2 =
a−

√
d

2
.(16)

Обсудим вопрос о конструировании для уравнения (14) эквивалентной га-
мильтоновой системы.
Воспользуемся предложенной выше схемой. В рассматриваемой задаче

уравнению (14) могут соответствовать две различные нормальные формы
искомой гамильтоновой системы, а именно, матрицы (8) при σ = 1 и σ = −1.
Покажем, что соответствующим выбором вектора c ∈ R4 можно получить две
качественно различные ЛАГС вида (13), в которых матрица JA имеет вид
нормальной формы (8) и которые будут эквивалентны уравнению (14) как
при σ = 1, так и при σ = −1.
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Пусть, например, c = (c1, c2, 0, 0) – некоторый вектор такой, что c1c2 �= 0.
Покажем, что тогда уравнение (14) можно свести линейным невырожденным
преобразованием к гамильтоновой системе вида (13).
Воспользуемся теоремой 1, для чего следует определить наблюдаемость

системы (13), в которой JA имеет вид нормальной формы (8). Имеем

(JA)∗c =

⎡⎢⎢⎣
0
0

ω1c1
σω2c2

⎤⎥⎥⎦ , (JA∗)2c =

⎡⎢⎢⎣
−ω2

1c1

−σω2
2c2

0
0

⎤⎥⎥⎦ , (JA∗)3c =

⎡⎢⎢⎣
0
0

−ω3
1c1

−σω3
2c2

⎤⎥⎥⎦ .(17)

Следовательно, матрица (3) здесь имеет вид

D(c) =

⎡⎢⎢⎢⎣
c1 c2 0 0

0 0 ω1c1 σω2c2

−ω2
1c1 −σω2

2c2 0 0

0 0 −ω3
1c1 −σω3

2c2

⎤⎥⎥⎥⎦ .(18)

Тогда

detD(c) =

{
−c21c

2
2ω1ω2(ω

2
1 − ω2

2)
2, если σ = 1,

c21c
2
2ω1ω2(ω

4
1 − ω4

2), если σ = −1.

Следовательно, detD(c) �= 0 при c1c2 �= 0 и ω1 �= ω2. Таким образом, матри-
ца D(c) обратима и, следовательно, система (13) наблюдаема. Тогда по тео-
реме 1 уравнение (14) и система (13) эквивалентны. А по теореме 2 замена

ỹ = D(c)x, где ỹ =

⎡⎢⎢⎣
y
y′

y′′

y′′′

⎤⎥⎥⎦, приводит систему (13) к скалярному дифферен-
циальному уравнению (14). Решения y(t) и x(t) уравнения (14) и системы (13)
связаны равенством y(t) = c1x1(t) + c2x2(t).
Задача конструирования эквивалентной гамильтоновой системы для ли-

нейного уравнения (14) решена. Еще раз обратим внимание на тот факт, что
уравнение (14) приводимо к двум раздичным гамильтоновым представлени-
ям (13) с нормальными формами (8). Конкретный выбор нормальной формы
требует знания дополнительной информации об изучаемом объекте.

Пример 1

В небесной механике (см., например, [13, 16–18]) одной из наиболее инте-
ресных является плоская ограниченная круговая задача трех тел. В линейной
постановке задача исследования движения тела малой массы в окрестности
треугольных точек либрации приводит к дифференциальному уравнению

y′′′′ + y′′ +
27

4
μ(1− μ)y = 0.(19)
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Характеристическое уравнение этого уравнения имеет вид

λ4 + λ2 +
27

4
μ(1− μ) = 0.(20)

Перейдем (следуя вышеприведенной схеме) от уравнения (19) к эквива-
лентной ЛАГС вида (13). Пусть μ ∈ (0, μ∗)

⋃
(1− μ∗, 1), где μ∗ = 1

2 −
√
69
18 ≈

≈ 0,0385. В этом случае все четыре корня уравнения (20) будут чисто мни-
мыми: λ1,2 = ±ω1(μ)i, λ3,4 = ±ω2(μ)i; здесь

ω1(μ) =

√
1

2
− 1

2

√
1− 27μ(1 − μ), ω2(μ) =

√
1

2
+

1

2

√
1− 27μ(1 − μ).

Следовательно, имеется два варианта нормальных форм (8). Определив из
каких-либо соображений вид нормальной формы, выберем далее в качестве
вектора c, например, вектор c = (1, 1, 0, 0). Тогда в соответствии с (17) и (18)
построим матрицу D = D(c), которая оказывается невырожденной. Следова-
тельно, уравнение (19) заменой ỹ = D(c)x сводится к эквивалентной гамиль-
тоновой системе вида (13), при этом их решения y(t) и x(t) будут связаны
равенством y(t) = x1(t) + x2(t).
Отметим, что анализ исходной постановки задачи трех тел показывает,

что в нормальной форме (8) следует брать σ = −1 (см. [13]).

4. Нелинейная задача

4.1. Основные утверждения

Обсудим теперь задачу конструирования эквивалентной гамильтоновой
системы для нелинейного уравнения Лурье (1).
Как и в линейной задаче, на первом этапе предлагается по корням уравне-

ния L(p) = 0 определить возможные варианты нормальных форм линейной
составляющей искомой гамильтоновой системы. Выбирается одна из соответ-
ствующих гамильтоновых матриц JA.
На втором этапе задается ненулевой вектор c ∈ R2n и линейная гамильто-

нова система (13). Пусть эта система наблюдаема. Пусть D = D(c) – соответ-
ствующая матрица наблюдаемости.
Определим векторы

γ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
γ2
0
γ4
...
0
γ2n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ỹ =

⎡⎢⎢⎢⎣
y
y′
...

y(2n−1)

⎤⎥⎥⎥⎦ , f̃(y) =

⎡⎢⎢⎢⎢⎢⎣
f(y)

(f(y))′

(f(y))′′
...

(f(y))(2n−3)

⎤⎥⎥⎥⎥⎥⎦ .(21)
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В этих формулах:
– производные y(k) и (f(y))(k) вычисляются по t от заданной функции y =

= y(t) и соответственно от f(y(t));
– координаты вектора γ определяются равенствами

γ2 = γ4 = . . . = γ2n−2m−2 = 0, γ2n−2m = b0,(22)
γ2n−2m+2 + γ2n−2ma1 = b1, . . . , γ2n + γ2n−2a1 + . . .+ γ2n−2mam = bm.

Определим также прямоугольную порядка 2n× (2n − 2) матрицу

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 . . . 0 0
0 0 0 0 . . . 0 0
γ2 0 0 0 . . . 0 0
0 γ2 0 0 . . . 0 0

. . .
γ2n−2 0 γ2n−4 0 . . . 0 0

0 γ2n−2 0 γ2n−4 . . . 0 γ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Лемма 1. Пусть линейная система (13) наблюдаема. Тогда замена

x = (D(c))−1[ỹ − T f̃(y)](23)

осуществляет переход от уравнения (1) к системе

x′ = JAx+ ξf(y), y = (x(t), c),(24)

в которой матрица JA – это выбранная нормальная форма, ξ = (D(c))−1γ.

В справедливости леммы 1 можно убедться прямым подсчетом.
Отметим, что уравнение (1) и система (24) эквивалентны. Однако полу-

чаемая при замене (23) нелинейная система (24) совсем не обязательно будет
гамильтоновой.
Напомним, что вектор c выбирался из единственного условия наблюдае-

мости линейной системы (13). Это предоставляет большую свободу в выборе
вектора c. Оказывается, при некоторых дополнительных условиях на вектор c
нелинейная система (24) уже будет гамильтоновой. А именно, верна
Лемма 2. Пусть вектор c выбран исходя из двух требований:

• линейная система (13) наблюдаема;
• при некотором вещественном α выполняется равенство

γ = αD(c)Jc,(25)

в котором D(c) – матрица наблюдаемости системы (13), γ – вектор
из (21), J – матрица (5).
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Тогда замена (23) приводит нелинейное уравнение (1) к системе (24), кото-
рая является гамильтоновой, при этом функция

H(x) =
1

2
(Ax, x) + αF ((x, c))(26)

является ее гамильтонианом. Здесь F (y) – это первообразная функции f(y),
т.е. F ′(y) = f(y).

Зам е ч а ни е 2. Равенство (25) в развернутом виде сводится к системе из
n линейных алгебраических уравнений относительно 2n неизвестных

αc21, αc
2
2, . . . , αc

2
2n,

с параметром α. В указанные уравнения входят и коэффициенты, определяю-
щие вид выбранной нормальной формы. Это приводит к тому, что только при
одном выборе нормальной формы система уравнений (25) имеет решение.
Другими словами, в нелинейной задаче (в отличие от линейной) вид нор-
мальной формы конструируемой гамильтоновой системы определяется одно-
значно. Указанный факт ниже доказывается для систем с двумя степенями
свободы.

Таким образом, верна
Те ор ем а 3. Пусть в соответствии со свойствами корней уравнения

L(p) = 0 выбрана одна из возможных нормальных форм JA. Пусть вектор
c выбран таким образом, что:

1) линейная система (13) наблюдаема,
2) выполняется равенство (25) при некотором α.

Тогда замена (23) приводит уравнение (1) к эквивалентной гамильтоновой
системе (24) с гамильтонианом (26), при этом вид нормальной формы га-
мильтоновой системы определяется однозначно.

4.2. Уравнения с двумя степенями свободы

В качестве основного приложения рассмотрим уравнение четвертого по-
рядка

L

(
d

dt

)
y = M

(
d

dt

)
f(y),(27)

в котором

L(p) = p4 + ap2 + b, M(p) = b0p
2 + b2(28)

– взаимно простые вещественные многочлены, а f(y) – скалярная непрерыв-
ная функция. Уравнения вида (27) часто называют уравнениями с двумя
степенями свободы.
Как и в разделе 3.3, будем предполагать, что коэффициенты a и b много-

члена L(p) удовлетворяют условиям (15) и, следовательно, все четыре корня
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многочлена L(p) являются чисто мнимыми вида ±iω1, ±iω2, где числа ω1 > 0
и ω2 > 0 определены равенствами (16). Обсудим вопрос о конструировании
для уравнения (27) эквивалентной гамильтоновой системы. Воспользуемся
теоремой 3.
В разделе 3.3 было отмечено, что многочлену L(p) соответствует две раз-

личные нормальные формы искомой гамильтоновой системы, а именно, мат-
рицы (8) при σ = 1 и σ = −1. В качестве вектора c будем рассматривать,
как и в разделе 3.3, вектор c = (c1, c2, 0, 0) такой, что c1c2 �= 0. В этом случае
линейная система (13) наблюдаема.
Остается обеспечить выполнение условия 2) теоремы 3, т.е. выбрать век-

тор c так, чтобы выполнялось равенство (25). В этом равенстве D(c) – это
матрица (18), а четырехмерный вектор γ определяется в соответствии с ра-
венствами (21) и (22) применительно к уравнению (27):

γ =

⎡⎢⎢⎣
0
γ2
0
γ4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0
b0
0

b2 − ab0

⎤⎥⎥⎦ .
Поэтому равенство (25) сводится к системе из двух уравнений{

α(ω1c
2
1 + σω2c

2
2) = −γ2

α(ω3
1c

2
1 + σω3

2c
2
2) = γ4

относительно неизвестных αc21 и αc22. Отсюда получим

αc21 =
ω2
2γ2 + γ4

ω1(ω2
1 − ω2

2)
, αc22 = − ω2

1γ2 + γ4
σω2(ω2

1 − ω2
2)
.

Отметим, что в силу предположения о взаимной простоте многочленов (28)
имеем

(ω2
1γ2 + γ4)(ω

2
2γ2 + γ4) �= 0.

Поэтому α �= 0 и (
c1
c2

)2

= −σ
ω2

ω1
κ,

где

κ =
ω2
2γ2 + γ4

ω2
1γ2 + γ4

.(29)

Таким образом, уравнение (25) разрешимо либо только при σ = 1 (если
κ < 0), либо только при σ = −1 (если κ > 0).
Пусть κ < 0 (κ > 0). В этом случае в качестве решения уравнения (25)

можно взять значения:

c1 = 1, c2 =

√
− ω1

κω2

(
c2 =

√
ω1

κω2

)
, α =

ω2
2γ2 + γ4

ω1(ω2
1 − ω2

2)
.(30)
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Таким образом, верна
Те ор ем а 4. Пусть κ < 0 (κ > 0). Пусть числа α, c1 и c2 определяются

равенствами (30). Тогда замена (23) приводит уравнение (27) к эквивалент-
ной гамильтоновой системе (24) с гамильтонианом (26):

H(x) =
1

2
(Ax, x) + αF (x1c1 + x2c2).

Здесь F (y) – это первообразная функции f(y), т.е. F ′(y) = f(y). При этом
вид нормальной формы (8) определяется однозначно, а именно, в ней σ = 1
(σ = −1).

Пример 2

Пусть уравнение (27) имеет вид

y′′′′ + 5y′′ + 4y = (f(y))′′ + 3f(y),(31)

т.е. в многчленах (28) имеем a = 5, b = 4, b0 = 1 и b2 = 3. Тогда ω1 = 2 и

ω2 = 1, а вектор γ равен: γ =

⎡⎢⎢⎣
0
1
0
−2

⎤⎥⎥⎦, т.е. γ2 = 1 и γ4 = −2.

По формуле (29) имеем κ = −1/2 < 0. Тогда по теореме 4 вид нормальной
формы (8) определяется однозначно: в ней следует положить σ = 1. Далее,
числа (30) здесь равны: c1 = 1, c2 = 2, α = −1/6.
Следовательно, по теореме 4 замена (23) (в которой D(c) – матрица (18)

при ω1 = 2, ω2 = 1, σ = 1, c1 = 1, c2 = 2) приводит уравнение (31) к эквива-
лентной гамильтоновой системе вида (24), в которой JA – матрица (8) при

ω1 = 2, ω2 = 1 и σ = 1, а вектор ξ = (D(c))−1γ равен ξ =

⎡⎢⎢⎣
0
0

1/6
1/3

⎤⎥⎥⎦. Гамильто-
ниан этой системы равен

H(x) =
2x21 + x22 + 2x23 + x24

2
− 1

6
F (x1 + 2x2).

5. Заключение

В статье предложены новые подходы в задаче конструирования эквива-
лентных гамильтоновых систем для линейных и нелинейных уравнений Лу-
рье (дифференциальных уравнений, содержащих производные только чет-
ных порядков). Подходы основаны на переходе от линейной части уравнения
Лурье к нормальным формам соответствующих гамильтоновых систем с по-
следующим преобразованием полученной системы. Предлагаемая схема не
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требует сложных и громоздких преобразований исходного уравнения. Пока-
зано, что в линейном случае задача конструирования эквивалентных гамиль-
тоновых систем может приводить к качественно различным системам. В то
же время для нелинейных систем указанная задача в естественном смысле
однозначно разрешима. В Приложении приводятся аналогичные результаты
в общей постановке (безотносительно к требованию на исходные уравнения,
чтобы они содержали производные только четных порядков). Основные ре-
зультаты доведены до расчетных формул и алгоритмов.

ПРИЛОЖЕНИЕ

Вспомогательные построения

Доказательства основных утверждений работы базируются на приводи-
мых ниже вспомогательных утверждениях общего характера, относящихся
не только к гамильтоновым системам и представляющих самостоятельный
интерес.

Рассмотрим систему, описываемую дифференциальным уравнением
n-го порядка

L

(
d

dt

)
y = M

(
d

dt

)
u(t),(Π.1)

в котором

L(p) = pn + a1p
n−1 + . . . + an−1p+ an,

M(p) = b0p
m + b1p

m−1 + . . . + bm
(Π.2)

– взаимно простые вещественные многочлены степеней n и m (n > m � 0).
Требуется построить эквивалентную уравнению (Π.1) систему, описывае-

мую уравнениями

x′ = Ax+ ξu(t), y = (x(t), c),(Π.3)

где A – квадратная (порядка n) матрица, ξ, c ∈ Rn – фиксированные векто-
ры, а символ (x, c) обозначает скалярное произведение векторов x и c из Rn.
Обратная задача: по системе (Π.3) построить эквивалентную ей систему, опи-
сываемую дифференциальным уравнением (Π.1).
Наиболее простым является переход от (Π.1) к эквивалентной системе

z′ = A0z + γu(t), y = (z(t), c0),(Π.4)

в которой c0 = (1, 0, 0, . . . , 0),

A0 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . .
0 0 0 . . . 0 1

−an −an−1 −an−2 . . . −a2 −a1

⎤⎥⎥⎥⎥⎥⎦ , z =

⎡⎢⎢⎢⎣
z1
z2
...
zn

⎤⎥⎥⎥⎦ , γ =

⎡⎢⎢⎢⎣
γ1
γ2
...
γn

⎤⎥⎥⎥⎦ ,
39



а координаты вектора γ определяются равенствами:

γ1 = γ2 = . . . = γn−m−1 = 0, γn−m = b0, γn−m+1 + γn−ma1 = b1,(Π.5)
. . . , γn + γn−1a1 + . . .+ γn−mam = bm.

Прямой подсчет показывает, что переход от уравнения (Π.1) к систе-
ме (Π.4) осуществляет замена z = ỹ − T ũ, в которой

ỹ =

⎡⎢⎢⎢⎣
y
y′
...

y(n−1)

⎤⎥⎥⎥⎦ , ũ =

⎡⎢⎢⎢⎣
u
u′
...

u(n−2)

⎤⎥⎥⎥⎦ ,(Π.6)

а прямоугольная порядка n× (n− 1) матрица T равна

T =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 . . . 0
γ1 0 0 . . . 0
γ2 γ1 0 . . . 0

. . .
γn−1 γn−2 γn−3 . . . γ1

⎤⎥⎥⎥⎥⎥⎦ .(Π.7)

Аналогичные задачи возникают и для нелинейных систем. В них аналогом
уравнения (Π.1) является система с нелинейной обратной связью, описывае-
мая уравнением

L

(
d

dt

)
y = M

(
d

dt

)
f(y),

где L(p) и M(p) – многочлены (Π.2), а f(y) – скалярная непрерывная функ-
ция. Аналогом системы (Π.3) является система, описываемая уравнениями

x′ = Ax+ ξf(y), y = (x(t), c).

Обсуждению различных вопросов, связанных с указанными задачами, по-
священы многие работы. Здесь особо следует указать фундаментальную мо-
нографию [8], в которой (в рамках линейной теории) не только проведен де-
тальный анализ таких базовых понятий, как “система”, “эквивалентность”,
“передаточная функция” и др., но и предложены конструктивные способы
построения эквивалентных систем.
Для изучения сформулированных задач рассмотрим следующие системы,

описываемые уравнениями вход–выход–состояние:
• система A, описываемая уравнением (Π.1),
• система B, описываемая уравнениями

x′ = Ax+ ξu(t), w = (x(t), c),(Π.8)

• система C, описываемая уравнениями

z′ = A0z + γu(t), v = (z(t), c0).(Π.9)
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Отметим, что системы (Π.8) и (Π.9) – это те же самые системы (Π.3) и (Π.4).
Представление их в новой форме преследует единственную цель, чтобы из-
бежать путаницы с обозначениями выходов рассматриваемых систем.
В качестве пространства входов систем A, B и C будем рассматривать

множество Cm-гладких функций u(t), а в качестве пространства состояний –
пространство Rn. Выход y(t) системы A при данном входе u(t) и данном на-
чальном (в момент времени t = 0) состоянии ỹ0 = (y0, y1, . . . , yn−1) определим
как решение задачи Коши⎧⎪⎨⎪⎩ L

(
d

dt

)
y = M

(
d

dt

)
u(t),

y(0) = y0, y
′(0) = y1, . . . , y

(n−1)(0) = yn−1.

Выход w(t) системы B при данном входе u(t) и данном начальном (в момент
времени t = 0) состоянии x0 ∈ Rn определим равенством w(t) = (x(t), c), где
x(t) – это решение задачи Коши{

x′ = Ax+ ξu(t),
x(0) = x0.

Аналогично определяется выход v(t) системы C.
Имеют место следующие утверждения.
Те ор ем а 5. Системы A и C эквивалентны.

Те ор ем а 6. Системы B и C эквивалентны тогда и только тогда, когда
система B является наблюдаемой и выполнены равенства A0 = DAD−1 и
γ = Dξ (здесь D – матрица наблюдаемости системы B, γ – вектор, коорди-
наты которого определены равенствами (Π.5)).
Пусть системы B и C эквивалентны. Тогда система (Π.4) приводима к

системе (Π.3) невырожденной заменой переменных x = D−1z.

Те ор ем а 7. Системы A и B эквивалентны тогда и только тогда, когда
система B является наблюдаемой и выполнены равенства A0 = DAD−1 и
γ = Dξ.
Пусть системы A и B эквивалентны. Тогда уравнение (Π.1) приводимо

к системе (Π.3) заменой переменных

x = D−1(ỹ − T ũ);

здесь T – матрица (Π.7), ỹ и ũ – векторы из (Π.6).

Теорема 5 – это известное утверждение (см., например, [2, 7, 8]). Спра-
ведливость теоремы 7 следует из теорем 5 и 6. Доказательство теоремы 6
проводится стандарными методами теории систем.
Дока з а т е л ь с т в о т е о р емы 1. Необходимость. Пусть уравнение (9)

и гамильтонова система (13) эквивалентны. Тогда по теореме 7 система (13)
наблюдаема и выполнено равенство A0 = D(JA)D−1, где A0 – матрица (12),
D – матрица наблюдаемости системы (13).
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Достаточность. Пусть система (13) наблюдаема. Требуется показать, что
уравнение (9) и гамильтонова система (13) эквивалентны. Для этого покажем,
что выход y(t) = (x(t), c) системы (13) является и выходом уравнения (9)
при начальном состояниии y0 таком, что y0 = (x(0), c). И наоборот, каждый
выход y(t) уравнения (9) является и выходом системы (13) при начальном
состояниии x0 таком, что y0 = (x0, c).
Ограничимся рассмотрением случая, когда система (13) яляется четырех-

мерной, т.е. в ней n = 2. Тогда уравнение (9) принимает вид (14) и, следова-
тельно, L(p) = p4 + ap2 + b.
Для выхода y(t) = (x(t), c) системы (13) имеем

y′ = (x′, c) = (x,A∗c), y′′ = (x, (A∗)2c), y′′′′ = (x, (A∗)4c).
Отсюда

y′′′′ + ay′′ + by = (x, (A∗)4c) + (x, (A∗)2c)a+ (x, c)b =

= (x, [(A∗)4 + a(A∗)2 + bI]c) = 0,

так как матрица A (а следовательно, и транспонированная матрица A∗) явля-
ется решением своего характеристического уравнения p4+ap2+ b = 0. Таким
образом, функция y(t) = (x(t), c) является решением уравнения (9).
Пусть теперь y(t) – выход уравнения (14); этому выходу отвечает началь-

ное состояние ỹ0 = (y0, y1, y2, y3). Определим начальное состояние x0 четы-
рехмерной системы (13) из системы уравнений

(x0, c) = y0, (x0, A
∗c) = y1, (x0, (A

∗)2c) = y2, (x0, (A
∗)3c) = y3

или (что то же самое) из уравнения D(c)x0 = ỹ0. В силу наблюдаемости систе-
мы (13) это уравнение имеет единственное решение x0 = (D(c))−1ỹ0. Неслож-
но видеть, что выход системы (13) при найденном начальном состоянии x0
совпадает с функцией y(t).
Теорема 1 доказана.

Дока з а т е л ь с т в о т е о р емы 2. Справедливость этого утверждения
следует из теоремы 7.

Дока з а т е л ь с т в о л еммы 2. В силу леммы 1 замена (23) преобразует
уравнение (1) к системе (24). Для доказательства леммы 2 остается пока-
зать, что функция (26) является гамильтонианом системы (24), т.е. показать
справедливость равенства

J∇H(x) = JAx+ ξf((c, x)),

или так как J∇H(x) = JAx+ αJ∇F ((x, c)), то следует показать справедли-
вость равенства

αJ∇F ((x, c)) = ξf((c, x)).

Имеем ∇F ((x, c)) = f((c, x))c. Отсюда получим J∇F ((x, c)) = f((c, x))Jc.
Таким образом, следует показать справедливость равенства αJc = ξ. А это
равенство следует из (25) и равенства ξ = D−1γ (см. лемму 1).
Лемма 2 доказана.
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ПОДХОДЫ К ОПТИМИЗАЦИИ МЕТОДОВ НАВЕДЕНИЯ
НА ВЫСОКОСКОРОСТНЫЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИЕ

ЦЕЛИ. ЧАСТЬ 2. АНАЛИЗ ВОЗМОЖНОСТЕЙ РАЗЛИЧНЫХ
СПОСОБОВ ОПТИМИЗАЦИИ

На основе требований к методам оптимизации систем перехвата высо-
коскоростных летательных аппаратов, сформулированных в первой части
статьи, проведен анализ возможностей различных способов оптимизации
по решению этой задачи. На качественном уровне рассмотрены возмож-
ности классической теории оптимального управления, ее вариантов с ло-
кальной оптимизацией, вариантов с локальной оптимизацией по миниму-
му квадратично-биквадратных функционалов качества, на базе концеп-
ции обратных задач динамики с оценкой вариантов оптимизации инфор-
мационного обеспечения всех подходов.

Ключевые слова: статистическая теория оптимального управления, ло-
кальная оптимизация, квадратично-биквадратный функционал качества,
обратная задача динамики, адаптивная аналого-дискретная фильтрация.

DOI: 10.31857/S0005231025010033, EDN: JQVOGZ

1. Введение

Военно-техническое совершенство систем наведения во многом опреде-
ляется способами оптимизации законов управления и их информационно-
го обеспечения, положенными в основу их разработки. К настоящему вре-
мени известно большое число способов оптимизации, в различной степени
учитывающих требования точности и экономичности функционирования [1].
Среди них необходимо выделить варианты статистической теории оптималь-
ного управления (СТОУ), позволяющие синтезировать системы наведения,
совместно наилучшие по точности и экономичности затрат на управление.
В основу оптимизации этих вариантов положен принцип минимизации квад-
ратичных функционалов качества, учитывающих и ошибки управления, и
затраты энергии на его реализацию.
Среди этих вариантов необходимо выделить достаточно сложные класси-

ческие варианты СТОУ, обеспечивающие оптимальность систем наведения
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за все время перехвата [2–9], и более простые варианты, обеспечивающие их
локальную оптимальность на каждый текущий момент времени [2–4, 10–12].
В практике разработки сложных технических систем различного назначе-

ния используются также варианты синтеза, основанные на концепции обрат-
ных задач динамики [13–18], особенностью которых является возможность
достаточно простого учета при синтезе законов управления различного рода
нелинейностей.
Среди способов синтеза, не учитывающих расход энергии управляющих

сигналов, наиболее распространенными являются градиентные методы [1, 19],
обеспечивающие оптимизацию управления по различного рода функциона-
лам, имеющим экстремум на интервале работы системы.
При оптимизации информационных систем широкое распространение по-

лучили различные модификации фильтров Калмана [3, 4, 20–23].
В последнее время все большее распространение при синтезе систем, функ-

ционирующих в условиях априорной неопределенности, находят так называе-
мые интеллектуальные способы оптимизации, основанные на использовании
нейросетевых подходов [24, 25].
Анализ требований к используемым методам оптимизации, выполненный

в [26], позволяет выделить прежде всего возможность формирования неста-
ционарных методов самонаведения, возможность функционирования в задан-
ном поле условий применения и ограничений и возможность реализации по
динамическим свойствам носителя и способности формировать оценки коор-
динат, используемых в методе наведения. Необходимо отметить, что послед-
нюю возможность можно оценить только по результатам синтеза конкретных
методов наведения.
Практические способы реализации нестационарности методов наведения,

обеспечивающие возможность изменения управленческих и информационных
приоритетов в полете, основанные на использовании нестационарных моделей
состояния и коэффициентов матриц штрафов за точность и экономичность
функционирования как функций дальности и скорости, детально рассмотре-
ны в [4].
Кроме того, в [4] подробно рассмотрены методики синтеза законов наве-

дения на высокоскоростные летательные аппараты (ВСЛА) на основе клас-
сического подхода статистической теории оптимального управления в поста-
новке Летова–Калмана и на основе ее локального варианта, позволяющего
в качестве возмущений учесть несоответствие динамических свойств цели и
перехватчика.
Далее на качественном уровне будет проведена оценка различных способов

оптимизации методов наведения на ВСЛА, в той или иной степени учиты-
вающих требования, рассмотренные в [26].
При этом будет использоваться двойная нумерация разделов и формул, в

рамках которой первая цифра соответствует номеру части статьи, а вторая
определяет конкретный раздел или формулу.
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2. Анализ возможностей классической теории оптимального управления
в постановке Летова–Калмана

В приложении к решаемой задаче математический аппарат традиционной
статистической теории оптимального управления [3–9] в наиболее простом
варианте позволяет для перехватчика

ẋу(t) = Fуxу(t) + Bуu(t) + ξу(t), xу(0) = xу0,(2.1)

предназначенного для наведения на цель, движущуюся по траектории

ẋт(t) = Fтxт(t) + ξт(t), xт(0) = xт0,(2.2)

при наличии измерений

z(t) = Hx(t) + ξz(t), x(t) =
[
xT

т (t) xT
у (t)
]T(2.3)

сформировать закон управления

u(t) = K−1BT
у P(t)[x̂т(t)− x̂у(t)],(2.4)

Ṗ(t) = −L− FT
у P(t)− P(t)Fу + P(t)TBуK−1BT

у P(t), P(tк) = Q,(2.5)

оптимальный по минимуму квадратичного функционала Летова–Калмана

(2.6) I = M

⎧⎨⎩[xт(tк)− xу(tк)]
TQ[xт(tк)− xу(tк)] +

+

tк∫
0

[xт(t)− xу(t)]
TL[xт(t)− xу(t)]dt+

tк∫
0

uT(t)Ku(t)dt

⎫⎬⎭ .

Здесь xу и xт – n-мерные векторы состояний перехватчика и цели; Fу и Fт –
матрицы внутренних связей процессов (2.1) и (2.2); u – r-мерный (r � n) век-
тор управления; Bу – матрица эффективности управления; z – m-мерный
(m � 2n) вектор измерений; H – матрица связи (2.1) и (2.2) с (2.3); P – сим-
метричная матрица, определяющая текущий вес ошибок управления; t и tк –
текущее и конечное время управления; Q и L – неотрицательно определен-
ные матрицы штрафов за конечную и текущую точность управления; K –
положительно определенная матрица штрафов за величину сигналов управ-
ления; ξу, ξт и ξz – векторы центрированных гауссовских шумов состояния и
измерений; x̂у и x̂т – векторы оптимальных оценок процессов (2.1) и (2.2).
Необходимо отметить, что в состав минимизируемого функционала (2.6)

входят три слагаемых. Первое – терминальное, определяет точность системы
в конце управления, второе определяет интегральную точность за все время
управления, а третье – расход энергии управляющих сигналов. По совокуп-
ности управление (2.4), (2.5), минимизирующее функционал (2.6), является
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совместно наилучшим по точности и экономичности, что является несомнен-
ным достоинством.
Анализ (2.1)–(2.5) позволяет сделать ряд общих выводов.
1. Формируемый сигнал управления (2.4), (2.5) зависит от состояния си-

стемы x̂у и x̂т, ее способности воспринимать сигналы управления (которая
определяется матрицей Bу), штрафов K за сигналы управления и весовой
матрицы P. Чем больше штраф за управление, тем меньше сигналы u и тем
экономичней система, но тем менее она точна. Последнее предопределяется
тем, что малые значения u вызывают в (2.1) малые значения ẋу, а соответ-
ственно и малые целенаправленные изменения xу. Если система (2.1) хорошо
воспринимает сигналы управления u (матрица Bу имеет большие коэффици-
енты), то имеет смысл делать их большими, так как в такой ситуации будут
иметь место большие значения ẋу и система будет быстро изменять свое со-
стояние xу. Если же коэффициенты матрицы Bу малы, то не следует исполь-
зовать большие сигналы управления, поскольку это приведет к неоправданно
большим расходам энергии при очень малом выигрыше в точности.
2. Коэффициенты матрицы P совокупным образом учитывают в (2.4)

штрафы за текущую точность и экономичность, определяемые матрицами L
и K, детерминированные связи и эффективность сигналов управления, обу-
словленные матрицами Fу и Bу. Влияние детерминированных связей про-
является в том, что изменение штрафа lii за точность функционирования по
какой-либо координате xi приводит к изменению точности и по другим, функ-
ционально связанным с xi координатам. Происходящие при этом изменения
матрицы P приводят к изменению сигналов управления, а соответственно и
экономичности системы.
3. Спецификой использования (2.4), (2.5) является то обстоятельство, что

коэффициенты матрицы (2.5) вычисляются в обратном времени от tк к t в
процессе решения уравнения Риккати, в то время как в (2.4) они используют-
ся уже в прямом времени. Необходимо отметить, что сложность формирова-
ния управления, обусловленная в основном числом уравнений (2.5), которые
нужно решить для определения матрицы P, существенно превышает слож-
ность самой оптимизируемой системы (2.1). Причем даже незначительное
увеличение размерности (2.1) приводит к существенно неадекватному уве-
личению числа уравнений, которые нужно решать в процессе вычисления
матрицы P (число уравнений равно n2). Это явление, называемое «прокля-
тием размерности» и характерное для многих видов оптимальных систем,
сдерживает применение алгоритмов оптимального управления для сложных
систем высокой размерности. Необходимо, однако, отметить, что для стаци-
онарных систем матрицу P, определяемую только априорными сведениями,
можно вычислить заранее. Соответственно, заранее могут быть вычислены
для (2.4) и коэффициенты K−1BT

у P(t), число которых обусловлено размерно-
стью r× n. Последнее обстоятельство позволяет несколько упростить проце-
дуру использования (2.4), (2.5) на практике.
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4. Назначение различных штрафов L и Q на текущую и конечную точность
позволяет реализовать различные ошибки на разных этапах работы системы
перехвата и тем самым обеспечить требуемую точность в конце управления
при весьма малых текущих затратах энергии.
В приложении к задаче синтеза метода наведения на ВСЛА в отношении

аппарата (2.1)–(2.6) можно сделать следующие заключения:
• манипулируя видом матриц Q, L,K, используя представление их элементов
в виде функции координат состояния, можно сформировать нестационар-
ный закон наведения [4] с перераспределением управленческих функций в
зависимости от значения координат состояния при существенном услож-
нении процедуры вычисления (2.5);

• линейная зависимость (2.4) от ошибок управления (Δx = xт − xу) не обес-
печивает усиления роли управления для увода от границ потери устойчи-
вости;

• для реализации (2.4), (2.5) необходимо знать время наведения, что прак-
тически невозможно;

• при использовании линейных (линеаризованных) моделей состояния фор-
мирование управления (2.4), (2.5) обеспечивает приемлемую универсаль-
ность метода наведения, реализуя устойчивое функционирование в широ-
ком поле условий применения [3];

• необходимость решения высокоразмерной двухточечной краевой задачи,
обусловленной необходимостью решения уравнения (2.5) в обратном вре-
мени от tк к t, в то время как управление (2.4) формируется в прямом
времени от t к tк, существенно усложняет процедуру формирования управ-
ления;

• в законе (2.4) зависимость сигнала управления от динамических свойств
перехватчика (Fу) учитывается при решении (2.5) сложным образом, за-
трудняющим предсказание его значимости при решении задач перехвата;

• способность формировать все оптимальные оценки x̂у и x̂т, необходимые
для реализации (2.4), определяется условием наблюдаемости (см. раздел 6)
[3], выполнение которого зависит от вида внутренних связей (2.1), (2.2) и
набора измерителей в составе (2.3).
В заключение необходимо отметить, что по своим возможностям класси-

ческая теория оптимального управления в постановке Летова–Калмана не
удовлетворяет всем требованиям по реализации метода наведения на ВСЛА.
При этом наиболее сложными препятствиями для использования этого

способа для оптимизации методов перехвата является необходимость знания
времени наведения и сложность решения двухточечной краевой задачи.

3. Анализ возможностей вариантов локальной оптимизации
по минимуму квадратичных функционалов

Более перспективным является использование вариантов локальной опти-
мизации, обеспечивающей минимизацию функционалов качества на каждый
текущий момент времени, не требуя знания времени наведения. При этом
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можно сформировать управление без решения сложной двухточечной крае-
вой задачи, что существенно упрощает процедуру его получения. Кроме того,
в рамках этого подхода достаточно просто без расширения вектора состояния
учесть в законе управления различные возмущения, воздействующие на пе-
рехватчик. В этом случае вариант локальной оптимизации позволяет [3] для
перехватчика

ẋу(t) = Fуxу(t) + Bуu(t) + sу(t) + ξу(t), xу(0) = xу0,(3.1)

предназначенного для перехвата ВСЛА, движущегося по траектории (2.2),
при наличии измерений (2.3) сформировать управление

u(t) = K−1BT
у [Q(x̂т(t)− x̂у(t))−Gŝу(t)] ,(3.2)

оптимальное по минимуму функционала

(3.3) I = M

⎧⎨⎩[xт(t)− xу(t)]
TQ[xт(t)− xу(t)] +

+2[xт(t)− xу(t)]
TGsу(t) + sTу (t)Qsу(t) +

t∫
0

uT(t)Ku(t)dt

⎫⎬⎭ .

Здесь: sу и ŝу – n-мерные векторы измеряемых возмущений, воздействую-
щих на перехватчик, и их оптимальных оценок; G – неотрицательно опреде-
ленная матрица, определяющая вес возмущений в законе управления (3.2).
Анализ (3.1)–(3.3) в приложении к задаче синтеза метода наведения на ВСЛА
[26] позволяет сформулировать следующие выводы.
1. Используя коэффициенты матриц Q и G в виде функций координат

состояния (обычно дальности и скорости сближения), можно сформировать
законы управления [4] с достаточно просто назначаемыми моментами изме-
нения управляющих приоритетов как в процессе наведения на цель, так и
в рамках траекторного управления наблюдением [4] и регулировки влияния
возмущений на различных участках траектории перехвата.
2. Способ обладает высокой реализуемостью, обусловленной следующими

особенностями:
• способностью оптимизировать систему наведения под конкретный вид но-
сителя за счет формирования дополнительных корректирующих сигналов,
компенсирующих его инерционность;

• способностью учитывать широкий спектр как естественных, так и вирту-
альных возмущений [3] в виде несоответствия динамических свойств цели
и перехватчика, результатов прогноза пространственного положения це-
ли, компенсирующего инерционность носителя, приближения координат
состояния к допустимым границам потери устойчивости и т.д.;

• простотой формирования сигналов управления на каждый текущий мо-
мент времени, не требующей знания времени наведения и решения слож-
ной двухточечной краевой задачи.
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Возможность формирования оценок всех координат состояния, используе-
мых в методе наведения, может быть определена только по результатам син-
теза конкретных законов управления.
3. Способ обладает широкой универсальностью, характеризуемой способ-

ностью синтезировать методы наведения, устойчиво функционирующие в ши-
роком поле условий применения, в том числе и в условиях, не соответствую-
щих моделям, положенным в основу синтеза [4].
4. Ввиду линейной зависимости (3.2) от ошибок управления способ не обес-

печивает уверенного увода от границ потери устойчивости.

4. Анализ возможностей вариантов локальной оптимизации
по минимуму квадратично-биквадратных функционалов

Анализ возможностей вариантов синтеза методов наведения с локальной
оптимизацией по минимуму традиционных квадратичных функционалов [4]
свидетельствует, что по-прежнему остаются проблемными задачи увода но-
сителя от границ потери устойчивости и использования в законе управления
производных угловой скорости линии визирования (УСЛВ), что существенно
усложняет процедуру их информационного обеспечения.
Решение обеих задач может быть обеспечено использованием методов

наведения с нелинейной (кубической) зависимостью от ошибок управле-
ния, сформированных в процессе локальной минимизации квадратично-
биквадратных функционалов [3, 27].
В простейшем случае такой подход позволяет для перехватчика (2.1),

предназначенного для наведения на цель, движущуюся по траектории (2.2)
при наличии измерений (2.3), сформировать закон управления

u(t) = K−1BT
у
{
Q+ 2

[
Δx̂(t)Δx̂(t)TR

]}
Δx̂(t), Δx̂(t) = x̂т(t)− x̂у(t),(4.1)

оптимальный по минимуму функционала

(4.2) I = M

⎧⎨⎩Δx(t)TQΔx(t) + x(t)T
[
Δx(t)Δx(t)TR

]
Δx(t) +

+

t∫
0

uT(t)Ku(t)dt

⎫⎬⎭ .

Анализ (4.1) позволяет сделать следующие выводы.
1. Сигнал управления содержит два слагаемых: одно из них

K−1BT
у QΔx̂(t)(4.3)

– определяет его линейную составляющую, а второе

2K−1BT
у
[
Δx̂(t)Δx̂(t)TR

]
Δx̂(t)(4.4)
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– кубическую составляющую. При этом в (4.4) наряду со слагаемыми, пропор-
циональными Δx3i (i = 1, n) содержатся и комбинированные составляющие
Δx2iΔxj и ΔxiΔx2j (i = 1, n, j = 1, n, i �= j).
2. Соотношения между (4.3) и (4.4) зависят не только от коэффициентов

матриц Q и R, но и от соотношения ошибок управлени Δxi и Δxj.
При малых ошибках Δxi → 0 кубическая составляющая практически не

влияет на сигнал управления и точность наведения, обеспечивая высокую
чувствительность (4.1) к малым ошибкам.
При больших Δxi превалирующей становится кубическая составляющая,

обеспечивая ускоренную отработку опасных ошибок управления.
При этом в синтезированных законах [4, 27] не требуется знание оценок

производных УСЛВ, роль которых в определенной степени играют слагаемые
Δx2iΔxj и ΔxiΔx2j .
3. Манипулируя конкретным составом коэффициентов в матрицах[

Δx(t)Δx(t)T
]
и R, можно получить различные варианты законов управле-

ния с разным составом комбинационных составляющих.
4. Использование варианта локальной оптимизации по функционалу (4.2)

позволяет сохранить все ее преимущества, рассмотренные в разделе 3.
Проведенный анализ [3–9] показал, что по возможностям удовлетворения

совокупности перечисленных в [26] требований более предпочтительным яв-
ляется использование математического аппарата локального варианта стати-
стической теории оптимального управления с минимизацией квадратично-
биквадратных функционалов, позволяющего реализовать широкий спектр
законов управления, совместно наилучших по точности и экономичности.

5. Обратные задачи динамики

Существует целый класс задач управления, когда процесс синтеза не мо-
жет быть сведен к минимизации некоторого строго заданного функциона-
ла. В частности, это возникает тогда, когда задача управления имеет есте-
ственный глобальный критерий качества, правильно и полно отражающий
содержание задачи. Здесь цель управления часто заключается в поддержа-
нии определенных соотношений между отдельными компонентами вектора
состояния объектов. Эти соотношения обычно описывают условия нормаль-
ного функционирования объекта управления либо характер переходного про-
цесса.
В последнее время для решения таких задач наиболее часто стали приме-

няться методы синтеза управления на основе концепции обратных задач ди-
намики [13, 14]. Одной из первых работ, послужившей основой для развития
метода обратных задач динамики, является задача о реализации некоторой
назначенной в виде модели траектории движения управляемой системы [15].
Известен ряд различных приемов и методов решения задач, связанных с опре-
делением управления на основе этого метода [16–18]. В [18] показано, что
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структурные свойства алгоритмов управления для линейных систем полно-
стью идентичны алгоритмам, синтезированным по классической теории ана-
литического конструирования с квадратичными функционалами качества.
Рассмотрим основные положения метода обратных задач динамики (ОЗД)

с целью определения соответствия требованиям [26], предъявляемым к мето-
дам синтеза управления в задачах наведения.
Пусть дана управляемая и наблюдаемая динамическая система, матема-

тическая модель которой представляется дифференциальным оператором

ẋу(t) = f(xу(t),u(t), a(t), sу(t), t),(5.1)

где xу(t) = [xу1(t), . . . , xуn(t)]
T – n-мерный вектор состояния системы;

a(t) = [a1(t), . . . , ap(t)]
T – p-мерный вектор параметров;

u(t) = [u1(t), . . . , ur(t)]
T – r-мерный вектор управляющих функций;

sу(t) = [sу1(t), . . . , sуn(t)]
T – n-мерный вектор контролируемых внешних

возмущающих воздействий, являющихся заданной функцией времени, при-
надлежащей пространству L2;
вектор-функция f(xу(t),u(t), a(t), sу(t), t) предполагается непрерывной и

дифференцируемой по совокупности переменных xу,u, a, sу.
Требуется найти такое управление u(t), которое обеспечивает экстремаль-

ное значение функционалу качества вида

I =

t∫
t0

L(xу(t), xт(t),u(t), sу(t), t)dt,(5.2)

в котором L(xу(t), xт(t),u(t), sу(t), t) – скалярная неотрицательная функция.
Время t окончания управления может быть заданным или быть свободным.
На соотношение координат xу(t), xт(t) накладываются ограничения в виде
некоторой гиперповерхности [16]

C(xу, xт) = 0.(5.3)

Если под действием возмущений или при ненулевых начальных условиях
соотношение (5.3) не выполняется, то управляемый объект в силу наличия
его инерционности будет стремиться к этой гиперповерхности согласно вы-
ражению

lim
t→∞C(xу, xт) = 0.(5.4)

В выражениях (5.3) и (5.4) функция C(xу, xт) – r-мерная векторная функ-
ция, непрерывно дифференцируемая по своим аргументам, а символ ∞ озна-
чает время завершения переходных процессов объекта управления.
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В общем случае можно считать, что закон стремления к нулю функции
C(xу, xт) в (5.4) удовлетворяет решению уравнения

ψ1

[
λi, Ċ(xу, xт), C̈(xу, xт), . . . ,C(k)(xу, xт)

]
=

= ψ2

[
β, Ċ(xу, xт)

]
, i = 1, k,

(5.5)

где λi, β – произвольные постоянные числа, обеспечивающие устойчивость ре-
шения (5.5); i – номер постоянного коэффициента, учитывающего вес k-й про-
изводной ограничения (5.3) или (5.4); ψ1[•] и ψ2[•] – r-мерные в общем случае
нелинейные векторные функции, однако во многих технических приложениях
функции ψ1[•] и ψ2[•] в уравнении (5.5) можно описать следующими соотно-
шениями:

ψ1[•] = C(k)(xу, xт) + λk−1C(k−1)(xу, xт) + . . .+ λ1Ċ(xу, xт);

ψ2[•] = β0C(xу, xт) либо ψ2[•] = β0C(xу, xт) + β2C3(xу, xт).
(5.6)

Координаты n-мерного вектора xт(t) по своей физической природе либо
совпадают с вектором xу(t), либо представляют некоторую комбинацию его
компонент.
Управление u(t) необходимо определить в виде функции координат со-

стояния системы (5.1) и координат требуемой траектории. Если учесть, что
задачу перехвата можно представить в виде совокупности двух движений в
горизонтальной и вертикальной плоскостях, то применение метода синтеза
управления рассмотрим на примере управления в одной плоскости под дей-
ствием одного управляющего сигнала.

Скалярное управляющее воздействие
Внешнее возмущающее воздействие sу(t) в (5.1) является заданной функ-

цией времени, причем все его компоненты контролируемы.
Рассмотрим случай, когда система (5.1) может быть записана в виде си-

стемы линейных уравнений:

ẋ(t) = Fx(t) + Bu(t) + sу(t),(5.7)

где F = ‖fij‖ – квадратная матрица размерности n×n с известными элемен-
тами; B – вектор-столбец, определяющий коэффициенты, с которыми управ-
ление входит в каждое уравнение системы; внешнее возмущающее воздей-
ствие sу(t) является заданной функцией времени, причем все его компоненты
контролируемы; u(t) – скалярное управление.
Заметим, что число управляемых координат вектора x(t) в установившем-

ся режиме, а следовательно и размерность вектора C(xу, xт), определяется
размерностью вектора управления. Тогда без ограничения общности мож-
но считать, что система (5.7) эквивалентна скалярному дифференциальному
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уравнению

ẋ
(n)
у1 (t) +

n−1∑
i=0

αix
(i)
у1(t) =

r∑
j=0

bju
(j)(t) +

n∑
l=0

klsуl(t),(5.8)

где x1(t) – выходная координата системы (5.7); kl – весовой коэффициент
возмущений sуl.
Для определенности полагаем, что функция C(xу, xт) имеет вид

C(xу, xт) = xу1(t)− xт1(t).(5.9)

Решение этой задачи будем определять из условия, что C(xу, xт) стремится
к нулю по некоторому закону

lim
t→∞C(xу, xт) = 0.

Причем закон изменения C(xу, xт) может быть задан любым дифференци-
альным оператором, например (5.6):

C(n)(xу, xт) + λn−1 · C(n−1)(xу, xт) + . . .+ λ0 · C(xу, xт) = 0,(5.10)

где λj, j = 0, 1, . . . , n − 1 – любые положительные числа, обеспечивающие
устойчивость системы (5.6).
Подставляя (5.8) в (5.10), получаем дифференциальное уравнение r-го по-

рядка относительно u(t):

bru
(r)(t) + br−1u

(r−1)(t) + . . .+ b0u(t) = z(t),(5.11)

где z(t) =
∑n−1

i=0 αix
(i)
у1(t)−

∑n−1
j=0 λj(xу1 − xт1) + x

(n)
т1 (t)−

∑n
l=0 klsуl(t).

Наибольший интерес представляет случай, когда в уравнении (5.7) компо-
ненты вектора B, за исключением последнего, равны нулю. Тогда управление,
удовлетворяющее (5.11), определяется выражением

u(t) = b−1
0

⎡⎣− n−1∑
j=0

λjx
(j)
у1 (t) +

n−1∑
i=0

αix
(i)
у1 (t) +

n−1∑
j=0

λjx
(j)
т1 (t)

⎤⎦−
−b−1

0

[
n∑

l=0

klsуl(t)− x
(n)
т1 (t)

]
.

(5.12)

Здесь принято, что λn = 1.
Рассмотрим более подробно особенности управляемого процесса в случае,

если управление определяется уравнением (5.11) или (5.12). Пусть параметры
системы (5.7) αj , j = 0, 1, . . . , n− 1, и bi, i = 0, 1, . . . , r, известны точно, тогда
уравнение управляемого процесса имеет вид

x
(n)
у1 (t) +

n−1∑
j=0

λjx
(j)
у1 (t) = λ0xу1(t) +

n−1∑
j=0

λjx
(j)
т1 (t),(5.13)

54



или в матричной форме

ẋу(t) = Aλx(t) + Bλxт(t).(5.14)

Из (5.13) и (5.14) следует, что вне зависимости от свойств исходной си-
стемы свойства управляемого процесса однозначно определяются коэффици-
ентами λj. Это обусловлено тем, что Aλ – матрица Фробениуса, последняя
строка которой определяется коэффициентами λj , j = 0, 1, . . . , n− 1.
Неизвестные коэффициенты λj, j = 0, 1, . . . , n− 1, определяются из необ-

ходимых условий экстремума функционала (5.2).
В заключение отметим, что управление u(t), синтезированное согласно

предложенному методу, является функцией координат состояния xу, xт и па-
раметров λj, j = 0, 1, . . . , n−1 . Кроме того, и для нелинейной системы мате-
матическая модель управляемого процесса также определяется уравнением
вида (5.14), т.е. уравнением желаемого процесса.
Анализ условий применения изложенного метода синтеза управления в

задачах перехвата целей типа ВСЛА показывает:

– во-первых, он позволяет оценить возможность формирования законов
управления как для фиксированного, так и для текущего времени наведе-
ния;

– во-вторых, применение метода ОЗД позволят синтезировать как ли-
нейные, так и нелинейные законы за счет применения различных
функций ψ2[•] = β0C(xу, xт) – линейное управление, ψ2[•] = β0C(xу, xт)+
+β2C3(xу, xт), – линейно-кубическое управление, что дает возможность
реализовать увод от границ потери устойчивости;

– в-третьих, законы управления могут быть как стационарными, так и неста-
ционарными, что определяется видом представления математических мо-
делей (5.1)–(5.7) и видом маневрирования цели, проистекающими из вида
законов управления (5.11) и (5.12);

– в-четвeртых, вне зависимости от вида закона управления замкнутая си-
стема управления, как следует из системы (5.14), обладает требуемыми
свойствами, поскольку она определяется линейным дифференциальным
уравнением и обеспечивает достигаемые требования по устойчивости, пе-
ререгулированию и робастности по отношению к априорным ошибкам в
пределах не более 30%.

Метод позволяет осуществить перехват цели за заданное фиксированное
время в случае представления траектории перехвата в виде полета по прямой
и дуге с известным радиусом.
Кроме того, законы управления, синтезированные по методу ОЗД, не тре-

буют больших вычислительных ресурсов для их реализации в реальном мас-
штабе времени.

55



6. Анализ возможностей оптимизации информационного
обеспечения методов наведения

Информационное обеспечение, которое сводится к формированию оценок
координат относительного и абсолютного движения цели и перехватчика, ис-
пользуемым в методах наведения, является необходимым условием их реали-
зации [26]. Обзор методов наведения, выполненный в [2, 4, 27], свидетельству-
ет, что для их реализации, в общем случае, в каждой плоскости управления
должны формироваться оценки дальности, скорости сближения, бортового
пеленга цели, угловой скорости линии визирования (УСЛВ) цели и ее произ-
водных.
Необходимые условия, определяющие возможность формирования этих

оценок, определяются критерием наблюдаемости [2, 3] на основе взаимосвя-
зей между исходными моделями состояния (2.1), (2.2) и (2.3). В приложении
к линейным системам этот критерий определяется соотношением

rank
[
HT
∣∣∣FTHT

∣∣∣(FT)2HT
∣∣∣. . . ∣∣∣(FT)N−1 HT

]
= N = 2n,(6.1)

где F – динамическая матрица обобщенного вектора состояния, используемо-
го в (2.3).
Физический смысл (6.1) состоит в том, что при их выполнении на основе

(2.1), (2.2) и (2.3) можно получить N независимых уравнений с N неизвест-
ными, однозначно связывающих измерения с оценками.
В прикладном плане, наряду с выяснением самой возможности синтеза ал-

горитмов фильтрации, (6.1) позволяет определить набор измерителей, при ко-
тором будет обеспечиваться оценивание требуемого вектора состояния. Кро-
ме того, из (6.1) следует, что для решения этой задачи должны как минимум
измеряться нулевые производные вектора состояния [4]. В приложении к за-
даче синтеза методов наведения должны как минимум измеряться дальность
и бортовой пеленг цели.
Следует отметить, что различные координаты состояния вносят различ-

ный вклад в ошибки наведения. Проведенные исследования [2, 28] показали,
что ошибки оценивания угловых координат влияют на точность самонаве-
дения, на порядок и более сильно, чем ошибки оценивания дальности и ее
производных.
В зависимости от типа антенной системы возможны различные подходы

к выбору процедуры оптимизации информационного обеспечения.
Первый основан на использовании алгоритмов адаптивной аналого-

дискретной фильтрации.
Второй подход основан на использовании многоступенчатой фильтрации.
Третий подход базируется на трансформации входных сигналов, обеспе-

чивающей оптимальность использования заданного привода антенны с меха-
ническим управлением.

56



Четвертый основан на использовании следящих систем с нелинейной за-
висимостью от ошибок сопровождения, обеспечивающей их оптимальность
по минимуму локального квадратично-биквадратного функционала качества
(см. раздел 4).
Теоретические основы, лежащие в основе этих подходов, конкретные алго-

ритмы оценивания и результаты исследования их эффективности подробно
рассмотрены в [3, 4, 28].
Использование аналого-дискретной фильтрации обусловлено тремя при-

чинами:
– необходимостью непрерывного формирования сигнала траекторного
управления перехватчиком;

– дискретным и разновременным поступлением в алгоритм оценивания из-
мерений, формируемых датчиками различной физической природы (на-
пример, РЛС и системы воздушных сигналов);

– невозможностью использования моделей состояния, адекватно отражаю-
щих сложные пространственные маневры ВСЛА, что предопределяет рас-
ходимость традиционных фильтров Калмана и необходимость использо-
вания различных вариантов адаптации.
Суть аналого-дискретной фильтрации состоит в том, что экстраполяция

осуществляется с малым шагом τ , приближаясь по своей точности к анало-
говому прогнозу и обеспечивая непрерывный режим формирования сигнала
управления носителем, а коррекция осуществляется с достаточно большим
интервалом T � τ в моменты поступления измерений.
В общем случае алгоритмы адаптивной аналого-дискретной фильтрации

позволяют для процессов [3]

x(k) = Φ(k, k − 1)x(k − 1) + ξx(k − 1)(6.2)

при наличии наблюдений

z(k) = Qz [H(k)x(k) + ξz(k)] ,(6.3)

Qz(k) =

{
E при k = nT/τ, n = 1, 2, 3, . . . ,
0 при k �= nT/τ

сформировать оценки

x̂(k) = xэ(k) +Kфа(k)Δz(k), x̂(0) = x0,(6.4)

Δz(k) = z(k)− Qz(k)H(k)xэ(k),(6.5)

xэ(k) = Φ(k, k − 1)x̂(k − 1) + uк(k),(6.6)

uк(k) =

⎧⎪⎪⎨⎪⎪⎩
⎧⎨⎩
fп(Δz(k)) при k = nT/τ, если используется

адаптивная коррекция результатов прогноза,
0 при k �= nT/τ,

0, если коррекция результатов прогноза не используется,

(6.7)
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Kфа(k) = Qу(k)D(k)HT(k)D−1
z (k),(6.8)

Qу(k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎧⎨⎩
fу(Δz(k)) при k = nT/τ, если используется адаптивная

коррекция коэффициентов усиления невязки,
E при k �= nT/τ,

E, если коррекция коэффициентов усиления невязки не
используется,

(6.9)

D(k) =

{
[E−Kфа(k)H(k)]Dэ(k) при k = nT/τ,

Dэ(k) при k �= nT/τ,
D(0) = D0.(6.10)

Dэ(k) = Φ(k, k − 1)D(k − 1)ΦT(k, k − 1) +Dx(k − 1).(6.11)

Здесь: Φ – матрица внутренних связей (6.2); Qz(k) – матрица признаков при-
хода измерений; Dx – матрица дисперсий шумов ξx состояний (6.2); Dz –
матрица дисперсий шумов ξz измерений (6.3); D – матрица ошибок оценива-
ния; uк – поправка прогноза, величина которого определяется по результатам
анализа невязки fп(Δz(k)); Qу – матрица весовых множителей, используемых
при автоматической коррекции коэффициента усиления невязки по резуль-
татам fу(Δz(k)) ее анализа; E – единичная матрица.
Отличие (6.3)–(6.11) от типового алгоритма Калмана заключается в двух

особенностях. Первая состоит в том, что экстраполяция состояния (6.6) и
вычисление ковариационной матрицы ошибок прогноза (6.11) выполняют-
ся с малым интервалом τ , а измерение (6.3) и коррекция оценок x̂ (6.4) –
с большим интервалом T � τ . Причем вторая особенность предопределяет
возможность использовать самые разнообразные приемы адаптации и разно-
временно поступающие измерения.
В (6.2)–(6.11) приведены два наиболее эффективных способа предотвра-

щения расходимости алгоритма фильтрации (6.3), (6.4) при интенсивном ма-
неврировании ВСЛА. Один из них основан на формировании адаптивной
поправки (6.7) прогноза, другой – на коррекции (6.9) коэффициента (6.8)
усиления невязки. Предпочтительность выбора того или иного способа адап-
тации зависит от размерности модели движения цели и состава измерителей.
Процедуры расчета поправок (6.7) и (6.9), в том числе и при использовании

разновременно приходящих измерений, подробно рассмотрены в [3].
Следует отметить, что в промежутках между приходом измерений (6.3)

сигнал управления перехватчиком формируется по результатам прогно-
за (6.6) при uк = 0. За это время накапливается ошибка прогноза, обуслов-
ленная несоответствием реального полета ВСЛА используемой модели (6.2).
С приходом измерений (6.3) от какого-либо из датчиков в моменты времени,
соответствующие n = 1, 2, 3, . . . , выполняются две операции.
В соответствии с первой по правилам, изложенным в [3, 28], вычисляют-

ся адаптивные поправки (6.7) прогноза (6.6) с изменением величины невяз-
ки (6.5) либо поправки (6.9), изменяющей ее вес.
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Функциональная схема трехступенчатого фильтра четвертого порядка.

В рамках второй операции осуществляется формирование оценки по пра-
вилу (6.4) с учетом выбранного способа адаптации. При этом реальная точ-
ность оценивания по сравнению с потенциальной, определяемой (6.10), (6.11),
несколько ухудшается, однако обеспечивается устойчивость оценивания при
выполнении ВСЛА сложных маневров.
Наряду с адаптивной коррекцией прогноза (6.7) или коррекцией коэффи-

циентов усиления невязки (6.9), рассмотренных в [4], весьма эффективным
является способ фильтрации с идентификацией параметров Φ(k, k − 1) (6.2)
исходной модели состояния. Необходимо, однако, подчеркнуть, что обеспе-
чивая эффективную адаптацию модели к условиям применения, этот способ
требует существенно больших вычислительных затрат [28].
Оценивание дальности, скорости сближения и ее производных по результа-

там независимых измерений дальности (времени запаздывания отраженных
сигналов) и скорости (доплеровской частоты) не представляет особых трудно-
стей. В то же время оценивание бортовых пеленгов, УСЛВ и ее производных
по измерениям лишь углов является достаточно сложной задачей.
Одним из наиболее простых способов ее решения является использование

многоступенчатой фильтрации [4]. Поставленная задача достигается тем, что
измерения подаются на вход многоступенчатого фильтра, представляющего
собой набор последовательно соединенных фильтров нарастающей размерно-
сти (n � 2), каждый из которых формирует оценки, используемые в следую-
щем фильтре в качестве измерений, что определяет возрастание в них числа
обратных связей и соответственно повышение устойчивости и точности оце-
ниваемых производных.
Принципы функционирования предложенного способа поясняются на при-

мере трехступенчатого фильтра четвертого порядка при условии, что исполь-
зуется один измеритель. Его функциональная схема приведена на рисунке,
где Ф1 – первая ступень многоступенчатого фильтра, формирующая по из-
мерению z1 оценки x̂11, x̂12 и передающая их на вторую ступень в качестве
измерений; Ф2 – вторая ступень многоступенчатого фильтра, формирующая
оценки x̂21, x̂22, x̂23 и передающая их на третью ступень в качестве измере-
ний; Ф3 – третья ступень многоступенчатого фильтра, формирующая оценки
x̂31, x̂32, x̂33, x̂34 и передающая их потребителю.
Эффективность предложенного способа многоступенчатой фильтрации

была проверена в [4] на примере устойчивого формирования оценок угла и его
производных вплоть до четвертого порядка при наличии одного измерителя.
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7. Заключение

Материал, рассмотренный в статье, позволяет сделать следующие выводы.
На основе требований к способам оптимизации методов наведения на

ВСЛА [26], включая необходимость формирования нестационарных законов
управления в заданной области условий применения в рамках действующих
ограничений и выполнения условий реализуемости и на основе предваритель-
ных исследований была проведена оценка возможностей различных способов
оптимизации по синтезу законов управления перехватчиком.
В частности была проведена оценка возможностей:
• классической теории оптимального управления в постановке Летова–
Калмана;

• вариантов локальной оптимизации, в том числе и с учетом реальных и
виртуальных возмущений;

• локальной оптимизации по квадратично-биквадратным функционалам
качества;

• концепции обратных задач динамики;
• вариантов информационного обеспечения синтезируемых методов наве-
дения.

Сравнительный анализ показал, что по совокупности требований наилуч-
шими возможностями обладают метод локальной оптимизации по минимуму
квадратично-биквадратных функционалов качества и метод на основе кон-
цепции обратных задач динамики.
В последующих статьях будет проведена оценка возможностей градиент-

ного способа оптимизации и вариантов так называемого интеллектуального
управления.
Кроме того, будут рассмотрены примеры синтеза конкретных методов на-

ведения, проведенного в рамках наиболее приемлемых способов оптимизации.
В заключение необходимо отметить, что при использовании нескольких

вариантов оптимизации возникает задача квалифицированного выбора наи-
лучшего результата. В простейшем случае этот выбор осуществляется по ре-
зультатам сравнения показателей эффективности и живучести. Более обос-
нованный выбор можно осуществить, используя так называемую форсайт-
концепцию [29], которая позволяет автоматизировать задачу выбора альтер-
нативы по существенному числу разнородных тактических, экономических и
технологических признаков.
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ПОЛУНАТУРНОЕ МОДЕЛИРОВАНИЕ ЦИФРОВОЙ СИСТЕМЫ
УПРАВЛЕНИЯ ВЕРТИКАЛЬНЫМ ПОЛОЖЕНИЕМ ПЛАЗМЫ

В ТОКАМАКЕ КТМ1

Статья посвящена разработке цифровой системы управления неустой-
чивым вертикальным положением плазмы в токамаке КТМ. Синтезиро-
ван регулятор с постоянными параметрами на массиве моделей объекта,
при этом один регулятор обеспечивает заданное качество управления и
запасы робастной устойчивости одновременно для двух моделей объекта
с переменными параметрами. Проведен анализ робастной устойчивости.
Работоспособность системы проверена проведением полунатурного моде-
лирования с использованием полной нелинейной модели инвертора напря-
жения, с учетом ограничений на его максимальный ток и напряжение.

Ключевые слова: токамак, КТМ, полунатурное моделирование, робаст-
ный регулятор, LMI.

DOI: 10.31857/S0005231025010044, EDN: JQKONJ

1. Введение

Системы управления вертикальным положением плазмы критически важ-
ны для функционирования современных D-образных токамаков, в которых
плазма вытянута по вертикали в полоидальном сечении [1–4]. Вертикаль-
ное положение плазмы в таких токамаках неустойчиво, поэтому для обес-
печения плазменных разрядов применяется система управления с обратной
связью. Воздействие на вертикальное положение плазмы осуществляется по-
средством магнитного поля, создаваемого током в обмотке горизонтального

1 Работа выполнена при финансовой поддержке проекта РНФ (№ 21-79-20180), а так-
же научно-технической программы ИРН № BR23891779 «Научно-техническое обеспечение
экспериментальных исследований на казахстанском материаловедческом токамаке КТМ»
программно-целевого финансирования Министерства энергетики Республики Казахстан.
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Рис. 1. Сечение токамака КТМ.

управляющего поля (ОГУП) [5]. Система управления вертикальным поло-
жением плазмы должна обеспечивать устойчивость вертикального положе-
ния плазмы и выполнение заданного сценария по вертикальному положению
плазмы в течение разряда.
Токамак КТМ (Казахстанский Токамак Материаловедческий) [6, 7] распо-

ложен в г. Курчатов (Казахстан). Помимо ОГУП на токамаке используются
шесть обмоток управления (ОУ) формой плазмы, обмотка индуктора (ОИ),
наводящего плазменный ток, обмотка тороидального магнитного поля (ОТП)
и обмотка пассивной стабилизации положения плазмы. Расположение обмо-
ток токамака показано на рис. 1.
Плазма в токамаке является нестационарным объектом управления, в

частности динамика вертикального положения плазмы может значительно
меняться в течение разряда, кроме того, она может существенно отличать-
ся в разрядах с различным сценарием. Ранее в [8] были рассчитаны модели
вертикального движения плазмы для нескольких разрядов, синтезирована
система управления током в ОГУП и получены оценки области управляемо-
сти вертикального положения плазмы. На токамаке КТМ планируется ввод
в эксплуатацию нового источника питания ОГУП в виде инвертора напря-
жения в режиме широтно-импульсной модуляции (ШИМ). Целью данной ра-
боты является разработка и полунатурное моделирование цифровой системы
управления вертикальным положением плазмы с новым источником питания.
При этом синтезируется стационарный регулятор, который обеспечивает при-
емлемое качество управления и необходимые запасы робастной устойчивости
замкнутой системы управления одновременно для двух различных сценари-
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ев плазменного разряда. Полунатурное моделирование (Hardware-in-the-loop
simulation) [9] является важным этапом перед внедрением разработанной си-
стемы управления в практику экспериментов. При таком способе моделиро-
вания регулятор работает на реальном оборудовании, функционально иден-
тичном тому, которое будет использоваться на практике. При достаточной
точности модели объекта управления полунатурное моделирование позволя-
ет гарантировать работоспособность разрабатываемой системы управления
и сократить затраты на внедрение. В данной работе предлагается методи-
ка проведения полунатурного моделирования каскадной системы управления
вертикальным положением плазмы и приведены его результаты в различных
режимах работы.
Далее в разделе 2 приводится постановка задачи, структурная схема син-

тезируемой системы управления и описание используемых моделей плазмы.
В разделе 3 описан синтез каскадной системы управления вертикальным по-
ложением плазмы. В разделе 4 проводится анализ запасов робастной устой-
чивости синтезированной системы по амплитуде и запаздыванию. В разде-
ле 5 приведены результаты полунатурного моделирования синтезированной
системы управления в рабочих и экстремальных режимах, что дает возмож-
ность проверить результаты, полученные в разделах 3 и 4. В Заключении при-
водятся основные итоги работы. В Приложении проводится сравнение циф-
ровой системы управления, синтезированной непосредственно на дискретной
модели объекта, и дискретизированной системы, настроенной на непрерыв-
ной модели, при условии, что метод настройки регулятора одинаковый, это
является обоснованием выбора метода синтеза системы управления.

2. Постановка задачи

Структурная схема цифровой каскадной системы управления вертикаль-
ным положением плазмы в КТМ приведена на рис. 2, где Zref – задающее
воздействие на вертикальное положение плазмы, Z – вертикальное положе-
ние плазмы, eZ = Zref − Z – ошибка по вертикальному положению плазмы,
IHFC ref – задающее воздействие на ток в ОГУП, IHFC – ток в ОГУП, eIHFC

=
= IHFC ref − IHFC – ошибка по току в ОГУП, UHFC – напряжение на ОГУП,
uPWM – управляющий сигнал.

Рис. 2. Структурная схема цифровой каскадной системы управления вертикаль-
ным положением плазмы в КТМ с инвертором напряжения в режиме ШИМ.
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Рис. 3. Принципиальная схема H-моста с источником постоянного напряжения.

Исполнительным устройством в системе управления является источник
питания ОГУП в виде инвертора напряжения в режимеШИМ с параметрами:
три уровня напряжения: [−1 0 1] кВ; мощность 2 МВт, соответствующая
максимальному току ±2 кА; частота ШИМ 1 кГц. Инвертор напряжения
состоит из H-моста иШИМ-контроллера, который преобразует управляющий
сигнал uPWM в последовательности импульсов v1−4, управляющих затворами
транзисторов H-моста (рис. 3). Цифро-аналоговый преобразователь (ЦАП)
в системе управления отсутствует, его роль выполняет ШИМ-контроллер,
когда он является частью цифрового управляющего устройства и цифровые
выходы v1−4 подаются на затворы транзисторов через оптические развязки.
ОГУП состоит из двух секций, соединенных последовательно-встречно.

Напряжение и ток в ОГУП связаны соотношением

LİHFC(t) +RIHFC(t) = UHFC(t),

где R = 212 мОм – активное сопротивление ОГУП, а L = 17 мГн – индуктив-
ность ОГУП. Дискретная передаточная функция ОГУП имеет вид

(1) PHFC(z) =
R−1
(
1− exp(−TsR/L)

)
z − exp(−TsR/L)

, IHFC(z) = PHFC(z)UHFC(z),

где z – переменная Z-преобразования, Ts = 1 мс – шаг дискретизации.
Модели вертикального движения плазмы в КТМ [8] получены по экспе-

риментальным данным двух наиболее типичных в прошедшей эксперимен-
тальной кампании на токамаке КТМ плазменных разрядов с током плаз-
мы 500 кА [10]: разряд № 5121 с вытянутостью (отношением вертикального и
горизонтального диаметров плазмы) 1,4 и нормальной длительностью, раз-
ряд № 5126 с вытянутостью 1,6 и малой продолжительностью удержания
плазмы, а затем представлены в виде линейных моделей в пространстве со-
стояний с переменными параметрами в дискретном времени:{

x(Tsk + Ts) = A
(
Tsk
)
x(Tsk) +B

(
Tsk
)
u(Tsk),

y(Tsk) = C
(
Tsk
)
x(Tsk),

где x =
[
ITPF ITV V IP

]T ∈ R
24×1 – вектор состояния, IPF ∈ R

8×1 – вектор то-
ков в обмотках полоидального поля (включая IHFC), IV V ∈ R

15×1 – токи на
вакуумной камере и пассивных структурах, IP – ток плазмы, u = UHFC –
вход, y = [Z IHFC ]

T – вектор выхода.
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a – Разряд № 5121 б – Разряд № 5126

Рис. 4. Изменение величины единственного неустойчивого полюса моделей
вертикального движения плазмы в течение разряда.

Набор {A,B,C} матриц для каждой модели вертикального движения
плазмы рассчитан с шагом Ts = 1 мс:
1) модель разряда № 5121 – для 1001 временной точки от 2,50 до 3,50 с;
2) модель разряда № 5126 – для 61 временной точки от 2,44 до 2,50 с.

Обе модели имеют один неустойчивый полюс, который значительно меняет-
ся в течение разряда, что показано на рис. 4. Для синтеза регулятора был
вычислен массив дискретных передаточных функций

(2) Pn(z) = Cn(zI −An)
−1Bn,

где индекс n обозначает номер временной точки разряда, для которой была
рассчитаны матрицы модели: An = A(Tsn), Bn = B(Tsn) и Cn = C(Tsn).
Необходимо синтезировать регулятор, с которым система управления бу-

дет иметь необходимый запас робастной устойчивости для обеспечения при-
емлемого качества управления одновременно для двух моделей вертикаль-
ного движения плазмы с переменными параметрами. Система управления
должна также иметь достаточный запас робастной устойчивости по фазе,
чтобы сохранять устойчивость при введении в контур обратной связи по
вертикальному положению плазмы транспортного запаздывания величиной
до 10 мс (10 тактов с шагом 1 мс), которая является верхней оценкой всех воз-
можных запаздываний в системе сбора, обработки и передачи данных тока-
мака КТМ. Запаздывание моделируется введением в контур обратной связи
дискретной передаточной функции z−10.

3. Синтез каскадной системы управления

Регуляторы в обоих каскадах управления синтезированы методом [11], ко-
торый позволяет синтезировать дискретный регулятор на массиве дискрет-
ных моделей объекта и осуществлять размещение АЧХ передаточной функ-
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ции разомкнутой системы (Loop Shaping). Синтез проводится техникой ли-
нейных матричных неравенств через выпукло-вогнутую процедуру. В При-
ложении рассматривается альтернативный подход, когда регулятор синтези-
руется на модели объекта в непрерывном времени, а затем проводится дис-
кретизация регулятора.
Сначала синтезируется внутренний каскад управления током в ОГУП на

модели (1), линейная модель инвертора напряжения получена методом иден-
тификации последовательного соединения ОГУП и инвертора напряжения с
использованием подхода [12]. В результате был синтезирован ПИ-регулятор
с дискретной передаточной функцией

(3) CHFC(z) = KPHFC
+KIHFC

Tsz

z − 1
, uPWM(z) = CZ(z)eHFC(z),

где KPHFC
= 0,004 В/А, KIHFC

= 0,15 B/(A × c). Сигнал на выходе регуля-
тора uPWM ограничен диапазоном ±1 В, который определяется параметра-
ми ШИМ-контроллера. Синтезированная система управления током в ОГУП
обеспечивает максимально возможное быстродействие с учетом ограничений
источника питания, обеспечивающего скорость нарастания тока в ОГУП до
Umax/L = 58,8 кА/с. Эта система управления использовалась в [8] для оценки
области управляемости вертикального положения плазмы.
Синтез внешнего каскада проводился на массиве дискретных передаточ-

ных функций внутреннего каскада: Z(z) = Gn(z)IHFC ref (z),

(4) Gn(z) = Pn(z)A(z)CHFC (z)
(
I + Pn(z)A(z)CHFC (z)

)−1
,

где A(z) = Umaxz
−TPWM/Ts – линейная модель инвертора напряжения, Umax =

= 1 кВ, TPWM/Ts = 1, n – индекс из (2). Таким образом, один регулятор будет
удовлетворять заданным критериям качества и запасам робастной устойчи-
вости одновременно для двух моделей c переменными параметрами. В резуль-
тате был синтезирован ПИД-регулятор с дискретной передаточной функцией

CZ(z) = KPZ
+KIZ

Tsz

z − 1
+KDZ

z − 1

Tsz
, IHFC ref (z) = CIHFC

(z)eZ(z),(5)

где KPZ
= 245,3276 A/м, KIZ = 3,831 кA/(м × c), KDZ

= 0,366 (A × c)/м.
Сигнал на выходе регулятора IHFC ref ограничен диапазоном ±2 кА.
При синтезе регулятора реализован подход Anti-Windup [13] для предот-

вращения насыщения сигнала на выходе регулятора и появления вследствие
этого внутренней неустойчивости в системе управления. В обоих регуляторах
используется механизм клямпинга (clamping), при котором интегрирование
прекращается, когда сигнал на выходе регулятора выходит за пределы уста-
новленного диапазона, а выход и вход интегратора имеют одинаковый знак.
На рис. 5 приведены результаты синтеза регулятора методом [11], пока-

заны заданные функции формы и сингулярные числа дискретных переда-
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Рис. 5. АЧХ передаточных функций системы управления вертикальным
положением плазмы.

точных функций синтезированной системы с моделями для временных то-
чек [3,229; 3,299; 3,449] с модели разряда № 5121 и [2,479; 2,489; 2,5] с модели
разряда № 5126.
Приведены АЧХ массива передаточных функций разомкнутой системы

(6) Ln(z) = Gn(z)CZ(z), Z(z) = Ln(z)eZ(z),

где Gn(z) – массив передаточных функций внутреннего каскада (4), a CZ(z) –
передаточная функция регулятора (5), массива функций чувствительности

Sn(z) =
(
I + Ln(z)

)−1
, eZ(z) = Sn(z)Zref (z),

массива дополнительных функций чувствительности

Tn(z) = Ln(z)Sn(z), Z(z) = Sn(z)Zref (z),

массива функций статической и низкочастотной чувствительности

Fn(z) =
(
Gn(1)KIZTs

)−1
(z − 1), для малых ω, z = exp(jωTs),

массива Q-параметров

Qn(z) = CZ(z)Sn(z), IHFC ref (z) = Qn(z)Zref (z)
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и массива передаточных функций от внешнего входного возмущения до eZ(z)

Wn(z) = −Sn(z)Gn(z).

Заданные функции формы bS и bT ограничивают массивы передаточных
функций Sn(z) и Tn(z) на всем частотном диапазоне, обеспечивая требуемую
область робастности и качества управления замкнутой системы.

4. Анализ робастной устойчивости каскада управления
положением плазмы

Для вычисления запасов робастной устойчивости замкнутой системы ис-
пользовался массив передаточных функций разомкнутой системы (6). На
рис. 6 приведены запасы робастной устойчивости по амплитуде, а на рис. 7 –
по запаздыванию.

a – Разряд № 5121 б – Разряд № 5126

Рис. 6. Запас робастной устойчивости по амплитуде линейной модели
замкнутой системы управления.

a – Разряд № 5121 б – Разряд № 5126

Рис. 7. Запас робастной устойчивости по запаздыванию линейной модели
замкнутой системы управления.
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a – Разряд № 5121, Zref = 1 см б – Разряд № 5126, Zref = 1 см

в – Разряд № 5121, Zref = 5 см г – Разряд № 5126, Zref = 5 см

Рис. 8. Диаграмма устойчивости нелинейной системы управления.

Запас робастной устойчивости по запаздыванию (delay margin) вычислен
по формуле [14]:

TM =
φM

ωc

π

180◦
,

где φM – запас робастной устойчивости по фазе, ωc – частота среза АЧХ (ча-
стота, при которой АЧХ передаточной функции разомкнутой системы первый
раз пересекает уровень 1). В наихудшем случае, который приходится на ко-
нец обоих разрядов, синтезированная система управления имеет удовлетвори-
тельный запас робастной устойчивости по амплитуде, составляющий ±10 дБ

71



(рис. 6). Запас робастной устойчивости по запаздыванию (рис. 7) также пре-
вышает необходимые 10 мс на всем протяжении обоих разрядов.
На рис. 8 показаны диаграммы устойчивости нелинейной системы управ-

ления с полной моделью инвертора напряжения и моделью вертикального
движения плазмы с переменными параметрами.
Варьировались запаздывание и коэффициент усиления в контуре обратной

связи по вертикальному положению плазмы. Нелинейная система имеет огра-
ниченную область управляемости, поэтому чем больше величина задающего
воздействия Zref , тем меньше ее запасы робастной устойчивости. Зеленый
цвет обозначает ситуации, когда система асимптотически устойчива, крас-
ный – когда не является. Желтым показаны запасы робастной устойчивости
линейной модели в наихудшем случае (рис. 6 и 7).

5. Полунатурное моделирование

Полунатурное моделирование цифровой системы управления проводилось
на стенде реального времени [15] в ИПУ РАН на двух целевых машинах ре-
ального времени (ЦМРВ). Структурная схема системы управления для по-
лунатурного моделирования приведена на рис. 9.
Цифровое управляющее устройство реализовано на ЦМРВ «Регулятор»,

где, помимо регуляторов обоих каскадов управления, находится ШИМ-конт-
роллер. Такой подход позволяет отказаться от использования ЦАП, что по-
вышает надежность и быстродействие системы, управляющий сигнал uPWM

не преобразуется в аналоговый: не нужно тратить время на преобразование
сигнала в ЦАП, не нужно обеспечивать помехозащищенность линии передачи
аналогового сигнала uPWM , сокращаются затраты на реализациюШИМ-кон-
троллера в аналоговом виде.
На ЦМРВ «Модель объекта» находятся модель вертикального движе-

ния плазмы и модель Н-моста с источником постоянного напряжения, ко-
торая реализована в Simscape Electrical. Шаг дискретизации регуляторов ра-
вен 1 мс, а шаг дискретизации ШИМ-контроллера, Н-моста и модели вер-
тикального движения плазмы – 100 мкс. Шаги дискретизации отличаются
в 10 раз для того, чтобы обеспечить изменение коэффициента заполнения
ШИМ с шагом 10%. Если при внедрении системы управления будет необхо-

Рис. 9. Структурная схема цифровой каскадной системы управления вертикальным
положением плазмы в КТМ при проведении полунатурного моделирования.

72



димость обеспечить еще меньший шаг коэффициента заполнения ШИМ, то
ШИМ-контроллер может быть реализован на ПЛИС.
Концепция полунатурного моделирования систем управления предполага-

ет, что часть системы является реальной, тогда как другая часть представ-
лена моделью. В данном случае все компоненты управляющего устройства
реализованы на ЦМРВ «Регулятор». Для того чтобы данное управляющее
устройство было функционально аналогичным тому, которое будет исполь-
зоваться в реальной системе управления (рис. 2), на выходе ЦМРВ «Модель
объекта» находятся два ЦАП.

5.1. Моделирование системы управления в рабочем режиме

Результаты полунатурного моделирования синтезированной системы в ра-
бочем режиме с задающим воздействием на вертикальное положение плазмы
в 5 см приведены на рис. 10. Помимо переходного процесса по вертикальному
положению плазмы и электрических сигналов источника питания (напряже-
ние, ток и мощность) приведено изменение неустойчивого полюса модели для
каждого разряда. Синтезированный регулятор обеспечивает приемлемое ка-

a – Модель разряда № 5121 б – Модель разряда № 5126

t, c t, c

Рис. 10. Моделирование системы управления вертикальным положением плазмы
в КТМ. Задающее воздействие по вертикальному смещению плазмы Zref = 5 см.

73



чество управления одновременно для двух моделей вертикального движения
плазмы. Требуемая мощность инвертора напряжения не превышает 1,2 МВт
при максимально возможной мощности 2 МВт.

5.2. Моделирование системы управления в экстремальных режимах

На рис. 11 приведены результаты полунатурного моделирования с макси-
мальным вертикальным смещением плазмы, при котором замкнутая система
сохраняет устойчивость и приемлемое качество управления, а на рис. 12 –
c максимально возможным запаздыванием в контуре обратной связи по вер-
тикальному положению плазмы. Смещение плазмы в токамаке КТМ более
чем на 10 см по вертикали на практике не требуется, так как при этом
произойдет столкновение сепаратрисы плазмы с лимитером токамака, сле-
довательно, синтезированная система управления позволяет осуществлять
управление вертикальным положением плазмы в КТМ во всем возможном

a – Модель разряда № 5121,
Zref = 27 см

б – Модель разряда № 5126,
Zref = 22 см

t, c t, c

Рис. 11. Моделирование системы управления вертикальным положением плаз-
мы в КТМ с максимально возможным задающим воздействием на вертикальное
положение плазмы.
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a – Модель разряда № 5121,
запаздывание 14 мс

б – Модель разряда № 5126,
запаздывание 23 мс

t, c t, c

Рис. 12. Моделирование системы управления вертикальным положением плазмы
в КТМ с максимально возможным запаздыванием в контуре обратной связи.

диапазоне. В обоих случаях величина временного запаздывания превышает
необходимую величину в 10 мс.
В [8] была рассчитана верхняя оценка области управляемости вертикаль-

ного положения плазмы, для разряда № 5121 она составляет 23 см, а для
разряда № 5126 – 26 см. Фактическая область управляемости для разряда
№ 5121 на 4 см больше полученной ранее оценки, это объясняется тем, что
в [8] для оценки использовалась модель для одной временной точки разря-
да с наибольшим значением неустойчивого полюса, которая не находится в
конце разряда, и возможная неустойчивость не успевает развиться. Этим же
объясняется тот факт, что полученное максимальное запаздывание в 14 мс
(рис. 12,а) превышает минимальный запас робастной устойчивости по запаз-
дыванию (рис. 7,а).

6. Заключение

Работоспособность системы управления продемонстрирована полунатур-
ным моделированием на двух моделях вертикального движения плазмы, рас-
считанных по экспериментальным данным разрядов с различным сценарием.
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При моделировании использовалась полная модель инвертора напряжения в
режиме ШИМ, учитывающая ограничение по мощности. При достаточной
верификации используемых моделей, полунатурное моделирование позволя-
ет гарантировать работоспособность системы управления при внедрении в
практику экспериментов.
Максимально возможное вертикальное смещение плазмы в синтезирован-

ной системе с инвертором напряжения в режиме ШИМ составляет 27 см на
модели разряда № 5121 и 22 см на модели разряда № 5126, что превышает ре-
ально необходимый диапазон в 10 см. Максимально возможное транспортное
запаздывание в контуре обратной связи по вертикальному положению плаз-
мы, при котором сохраняется устойчивость и приемлемое качество управле-
ния, составляет 14 мс на модели разряда № 5121 и 23 мс на модели разряда
№ 5126, что также больше необходимой величины в 10 мс.
В данной работе был использован робастный подход, когда синтезируется

один регулятор, удовлетворяющий критериям качества управления и запа-
сам робастной устойчивости одновременно для нескольких моделей верти-
кального движения плазмы. Возможен и другой, адаптивный подход, когда
регулятор настраивается для конкретного сценария или когда его параметры
меняются в течение разряда. Адаптивный подход позволяет получить лучшее
качество управления, так как в случае робастного подхода качество управ-
ления ограничено моделью объекта в «наихудшем случае». В данной задаче
робастный подход предпочтительнее адаптивному, поскольку не требует пе-
ренастройки регулятора при изменении сценария плазменного разряда.

ПРИЛОЖЕНИЕ

Сравнение цифровой системы управления
с дискретизированной аналоговой

Метод синтеза [11] позволяет синтезировать как дискретные, так и непре-
рывные системы управления. Распространен подход, когда в цифровой си-
стеме управления применяется дискретизированный регулятор. К примеру,
в [16–19] для управления плазмой в токамаке были синтезированы непрерыв-
ные регуляторы. Для демонстрации недостатков такого подхода проведено
следующее сравнение.
На рис. 13,а приведен результат синтеза непрерывного регулятора на мо-

дели объекта в непрерывном времени с теми же функциями формы, которые
использовались для синтеза дискретного регулятора в разделе 3. Функции
формы в методе синтеза [11] задают качество управления и запасы робаст-
ной устойчивости замкнутой системы, поэтому синтезированная аналоговая
система управления имеет примерно одинаковые с цифровой системой, полу-
ченной ранее в разделе 3, качество управления и запасы робастной устойчи-
вости.
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a – Аналоговая б – Дискретизированная

Частота, Гц Частота, Гц

Рис. 13. АЧХ передаточных функций аналоговой и дискретизированной
систем управления вертикальным положением плазмы.

Синтезированный аналоговый ПИД-регулятор задан передаточной функ-
цией

ĈZ(s) = K̂PZ
+ K̂IZ

1

s
+ K̂DZ

s

τs+ 1
,

где K̂PZ
= 266,9 A/м, K̂IZ = 10,3 кA/(м × c), K̂DZ

= 0,53 (A × c)/м, τ =
= 100 мкс, s – переменная преобразования Лапласа. После дискретизации
этого регулятора методом ZOH были вычислены АЧХ передаточных функ-
ций дискретизированной системы (рис. 13, б ). Дискретизированная система
управления является неустойчивой.
В [20] показано, что дискретизация может несущественно влиять на дегра-

дацию качества управления и запасов робастной устойчивости системы при
условии, если полоса пропускания замкнутой системы меньше частоты дис-
кретизации хотя бы в 30 раз. Полоса пропускания замкнутой системы управ-
ления меняется в зависимости от временной точки разряда от 10 до 79 Гц, из
чего следует, что шаг дискретизации Ts = 1 мс почти в 2,5 раза больше, чем
необходимо для сохранения качества управления при дискретизации. Кроме
того, модель объекта управления не является минимально-фазовой, посколь-
ку она содержит звенья запаздывания, что также вносит вклад в потерю
устойчивости системы управления при дискретизации.
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О ГАРАНТИРОВАННОЙ ОЦЕНКЕ ОТКЛОНЕНИЯ
ОТ ЦЕЛЕВОГО МНОЖЕСТВА В ЗАДАЧЕ УПРАВЛЕНИЯ

ПРИ ОБУЧЕНИИ С ПОДКРЕПЛЕНИЕМ1

Рассматривается задача целевого управления объектом, движение ко-
торого описывается системой дифференциальных уравнений специаль-
ного вида, где присутствуют нелинейные члены, зависящие от фазовых
переменных. На примере алгоритма Proximal Policy Optimization (PPO)
показано, что с помощью обучения с подкреплением можно получить
позиционную стратегию управления, решающую задачу приближенно.
Эта стратегия далее аппроксимируется кусочно-аффинным управлением,
для которого на основе метода динамического программирования стро-
ится гарантированная априорная оценка попадания траектории в целевое
множество. Для этого осуществляется переход к вспомогательной задаче
для кусочно-аффинной системы с помехой и вычисляется кусочно-квад-
ратичная оценка функции цены как приближенное решение уравнения
Гамильтона–Якоби–Беллмана.

Ключевые слова: нелинейная динамика, динамическое программирова-
ние, принцип сравнения, линеаризация, кусочно-квадратичная функция
цены, обучение с подкреплением, алгоритм PPO, множество разреши-
мости.

DOI: 10.31857/S0005231025010057, EDN: JQKKTQ

1. Введение

Рассматривается задача целевого управления на фиксированном конечном
интервале времени для нелинейной системы дифференциальных уравнений.
Такая задача тесно связана с построением множества разрешимости, содер-
жащего все стартовые позиции, из которых можно решить задачу синтеза
управлений. Для аппроксимации этого множества применяются различные
методы на основе анализа соответствующего дифференциального включе-
ния [1–3] или на основе уравнения Гамильтона–Якоби–Беллмана (ГЯБ) [4–7].
Указанные подходы применимы для широкого класса нелинейных систем, но

1 Работа выполнена при финансовой поддержке Минобрнауки России в рамках реа-
лизации программы Московского центра фундаментальной и прикладной математики по
соглашению № 075-15-2022-284.
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требуют больших вычислительных затрат. В последнее время активно раз-
рабатываются алгоритмы на основе машинного обучения, которые позволя-
ют как приблизить решение уравнения ГЯБ [8, 9], так и осуществить поиск
управления напрямую [10]. Последние, однако, не дают возможность полу-
чить какие-либо гарантированные оценки.
В данной работе предлагается понизить вычислительную сложность реше-

ния уравнения ГЯБ за счет поиска приближенного решения в классе кусочно-
квадратичных функций. Развиваются идеи, изложенные в [11–13]: использу-
ется метод, основанный на кусочной линеаризации правых частей дифферен-
циальных уравнений на совокупности симплексов и переходе к задаче управ-
ления для системы с кусочно-линейной динамикой и ограниченной помехой
(погрешностью линеаризации). Применение принципа сравнения [14, 15] поз-
воляет вывести уравнения на коэффициенты искомой функции цены, нулевое
множество уровня которой является внутренней оценкой множества разреши-
мости исходной нелинейной системы.
Приближенное решение уравнения ГЯБ упомянутым способом сопровож-

дается построением субоптимальной управляющей стратегии. Ранее было
предложено искать управление в виде непрерывной кусочно-аффинной функ-
ции [13], определяемой значениями в вершинах симплексов разбиения. При
этом значения в вершинах следует выбирать таким образом, чтобы мини-
мизировать производную функции цены вдоль траектории движения. Одна-
ко с учетом отсутствия гладкости построенной функции цены приходится
применять дополнительные эвристики, увеличивающие погрешность мето-
да. В настоящей работе поставлена цель продемонстрировать, что в качестве
управлений в вершинах также могут быть использованы результаты других
алгоритмов, в частности предлагается применять обучение c подкреплени-
ем [16, 17]. Показано, что если выбирать значения управлений на основе ней-
росетевой модели, то полученная оценка функции цены способна принимать
меньшие значения в начальный момент времени, что априорно гарантирует
попадание в меньшую окрестность целевого множества.
Отметим, что алгоритмы обучения с подкреплением также подразумевают

построение функции цены, которая является оценкой результирующей выго-
ды из каждой возможной позиции (в данном случае речь идет о расстоянии до
целевого множества в конечный момент времени), или ее аналогов. Но даже
при удачно подобранном управлении такая оценка не является гарантирован-
ной и может быть неточной. В то же время подход, указанный в настоящей
работе, позволяет приблизить любую наперед заданную стратегию кусочно-
аффинным управлением, для которого полученная оценка будет гарантиро-
ванной. Это может быть особенно полезно в случае наличия дополнительной
помехи, когда вычисления траекторий из различных начальных точек ока-
зывается недостаточно, чтобы оценить все возможные варианты поведения
системы.
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2. Постановка задачи

Рассмотрим нелинейную систему дифференциальных уравнений:

ẋ = f(t, x) + g(t, x)u, t ∈ [t0, t1], x ∈ Ω,(1)

где Ω – компактное множество в пространстве Rnx, достаточно большое, что-
бы все рассматриваемые траектории системы (1) оставались в Ω при t ∈
∈ [t0, t1]; будем полагать, что границей Ω является многогранник. Нелиней-
ные вектор-функция f(t, x) и матричная функция g(t, x) ∈ R

nx×nu непрерыв-
ны по t и дважды непрерывно дифференцируемы по x. Начальный и конеч-
ный моменты времени t0, t1 фиксированы. В каждый момент времени вектор
управления u должен принадлежать компактному выпуклому множеству P:

u ∈ P ⊂ R
nu .(2)

Требуется построить непрерывную управляющую стратегию в позицион-
ной форме u = u(t, x), которая переводит систему (1) из заданной точки x0 в
момент времени t0 в как можно меньшую окрестность компактного целевого
множества X1 ⊂ Ω в момент времени t1. Далее через u(·) будем обозначать
позиционные управления. Таким образом, должно выполняться

x(t1; t0, x0)|u(·) ∈ X1 +Bε(0),

где x(t1; t0, x0)|u(·) – точка траектории системы в момент времени t1, выпущен-
ной в момент t0 из точки x0 при замыкании этой системы управлением u(·);
Bε(0) – шар радиуса ε с центром в нуле, а значение ε � 0 необходимо ми-
нимизировать. Будем также считать, что целевое множество представимо в
виде X1 = {x ∈ Ω : φX1(x) � 0}, где φX1(x) – дважды непрерывно дифферен-
цируемая функция.
Кроме того, необходимо построить множество разрешимости W(t, t1,X1)

[15], т.е. совокупность всех векторов x ∈ Ω, для каждого из которых существу-
ет управление u(·), удовлетворяющее ограничению (2) и переводящее систему
из позиции {t, x} (t ∈ [t0, t1]) в целевое множество: x(t1; t, x)|u(·) ∈ X1. Одна-
ко поскольку задача построения точного множества разрешимости является
сложной, далее ограничимся поиском внутренних оценок этого множества.

3. Система с кусочно-аффинной динамикой

Симплексом [18] размерности n с вершинами x1, x2, . . . , xn+1 ∈ R
n при

условии, что векторы x2 − x1, . . . , xn+1 − x1 являются линейно независимы-
ми, называется множество

Sn =

{
α1x1 + α2x2 + . . .+ αn+1xn+1 : αi � 0,

n+1∑
i=1

αi = 1

}
.

При этом вектор барицентрических координат α(x) = (α1, . . . , αn+1)
T одно-

значно определяет положение любой точки x внутри симплекса. Кроме того,
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существует матрица H̃ [11] такая, что барицентрические координаты α(x)
линейно выражаются через x: α = H̃(xT, 1)T.
Пусть задано разбиение множества Ω на N симплексов Ω(i). При этом бу-

дем считать, что любые два симплекса либо не пересекаются, либо пересека-
ются только по какой-либо их общей грани размерности меньшей nx. В прак-
тических задачах, имея произвольный набор вершин, конкретное разбиение
можно реализовать, например, с помощью триангуляции Делоне [19, 20], ко-
торая эффективно вычисляется за счет построения выпуклой оболочки точек
в (nx + 1)-мерном пространстве [21].
Далее верхним индексом (i) будем обозначать соответствие вектора, мат-

рицы или функции симплексу Ω(i). В частности, обозначим вершины сим-
плексов как g

(i)
1 , . . . , g

(i)
nx+1 ∈ R

nx , где i = 1, N . Отметим, однако, что каждая
такая вершина может являться вершиной сразу нескольких симплексов.
В работах [11–13] был предложен способ построения непрерывной кусочно-

аффинной аппроксимации правой части системы (1), существенно исполь-
зующий разбиение множества Ω на симплексы. Было показано, как выбрать
матрицы A(i), B(i) и векторы f (i) так, что сразу для всех u ∈ P будет спра-
ведливо представление

f(t, x) + g(t, x)u = A(i)(t)x+B(i)(t)u+ f (i)(t) + v(i)(t, x, u), x ∈ Ω(i),(3)

где v(i) – погрешность локальной линеаризации. Эта погрешность является
ограниченной, и для нее существует оценка на основе разложения компо-
нент вектор-функций f(t, x) и g(t, x) по формуле Тейлора, не зависящая от
конкретного значения x во множестве Ω(i) и управления. Таким образом, все-
возможные значения v(i) можно ограничить некоторым эллипсоидом Q(i)(t):

Q(i)(t) = E(0, Q(i)(t)) = {x ∈ R
nx : 〈x, (Q(i))−1x〉 � 1},

Q(i) = (Q(i))T > 0.
(4)

Зам е ч а ни е 1. Если в системе (1) будет дополнительно присутствовать
аддитивный член в виде неизвестной ограниченной функции (помехи), то
он также может быть учтен при линеаризации системы за счет увеличения
эллипсоидов Q(i)(t) и смещения их центров.

Удобно перейти к расширенному пространству переменных, где вектор x̃
получается добавлением вспомогательной координаты с фиксированным зна-
чением, равным единице: x̃ = (xT, 1)T. Тогда на основе (3) в расширен-
ном пространстве переменных можно записать следующую кусочно-линей-
ную систему дифференциальных уравнений с автономными переключениями
[22, с. 5–9]:

˙̃x = Ã(i)(t)x̃+ B̃(i)(t)u+ C̃v(i), x̃ ∈ Ω(i) × {1}, t ∈ [t0, t1],(5)

Ã(i)(t) =

[
A(i)(t) f (i)(t)
O1×nx 0

]
, B̃(i)(t) =

[
B(i)(t)
O1×nu

]
, C̃ =

[
Inx×nx

O1×nx

]
,
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где величина v(i) интерпретируется как помеха. Будем называть помеху допу-
стимой, если она является измеримой функцией от времени и, кроме того, в
каждый момент времени удовлетворяет ограничению v(i)(t) ∈ Q(i)(t). Индекс
i = i(x(t)) в (5) является функцией состояния системы в момент времени t,
однако для краткости записи аргументы этой функции будем опускать.

4. Функция цены

4.1. Общие сведения

Рассмотрим вспомогательную функцию цены:

V̄ (t, x) = min
u(·)

{φX1(x(t1)) : x(t) = x} ,(6)

где x(·) – траектория нелинейной системы (1), выпущенная в прямом вре-
мени из начальной позиции {t, x}, x ∈ Ω, при фиксированном позиционном
управлении u(·). С помощью функции цены можно построить внутреннюю
оценку множества разрешимости [15]:

W(t, t1,X1) =
{
x ∈ Ω : V̄ (t, x) � 0

}
.(7)

Наряду с (7) будем рассматривать оценку окрестности множества разреши-
мости:

Wε(t, t1,X1) =
{
x ∈ Ω : V̄ (t, x) � ε

}
,

Wε(t, t1,X1) =
{
x ∈ Ω | ∃u(·) : φX1(x(t1; t, x)|u(·)) � ε

}
.

Также известно, что в точке дифференцируемости (t, x), где t < t1, x ∈ Ω,
функция V̄ (t, x) удовлетворяет попятному уравнению Гамильтона–Якоби–
Беллмана следующего вида:

min
u∈P

V̄ ′
(
t, x;
(
1, (f(t, x) + g(t, x)u)T

)T)
= 0,(8)

где V̄ ′(t, x; �) – производная функции V̄ (t, x) в точке (t, x) по направлению
� ∈ R

nx+1. В конечный момент времени справедливо соотношение V̄ (t1, x) =
= φX1(x). Функция V̄ (t, x) может не быть непрерывно дифференцируемой,
а решение уравнения (8) следует понимать в обобщенном смысле [23]. Однако
можно заменить решение V̄ (t, x) такой кусочно-квадратичной функцией, что
уравнение (8) будет выполняться приближенно. Эта функция будет найдена
далее на основе рассмотрения кусочно-линейной системы (5).

4.2. Кусочно-квадратичная функция

В каждой вершине g(i)l каждого симплекса Ω(i) определим аффинную по x
функцию 〈k(i)l (t), x̃〉, где при любом фиксированном t ∈ [t0, t1] вектор k

(i)
l ∈
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∈ R
nx+1 – это вектор неизвестных параметров. Тогда для каждого симплек-

са Ω(i) можно определить матрицу параметров, структура которой соответ-
ствует набору вершин g

(i)
1 , . . . , g

(i)
nx+1:

K(i)(t) =
[
k
(i)
1 (t), . . . , k

(i)
nx+1(t)

]
∈ R

(nx+1)×(nx+1).

Определим кусочно-квадратичную функцию следующим образом:

V (i)(t, x̃) = 〈x̃,K(i)(t)H̃(i)x̃〉, x̃ = (xT, 1)T, x ∈ Ω(i).(9)

Формула (9) соответствует интерполяции рассмотренных аффинных функ-
ций в вершинах симплексов:

V (i)(t, x̃) = 〈x̃,K(i)(t)H̃(i)x̃〉 = 〈(K(i)(t))Tx̃, α(i)(x)〉 =
nx+1∑
l=1

α
(i)
l (x)〈k(i)l (t), x̃〉.

Отметим, поскольку функция (9) определена для расширенного пространства
переменных x̃ = (xT, 1)T, в таком виде может быть представлена произволь-
ная кусочно-квадратичная функция, заданная на множестве симплексов Ω(i),
i = 1, N .
Будем использовать кусочно-аффинные управления вида

u(t, x) = Y (i)(t)H̃(i)x̃ =

nx+1∑
k=1

α
(i)
k (x)y

(i)
k (t) ∈ R

nu ,(10)

где матрица Y (i)(t) ∈ R
nu×(nx+1) составлена из столбцов y

(i)
k (t) ∈ P – значе-

ний управлений в вершинах симплекса Ω(i). Эти значения будут выбраны
далее. При этом величины y

(i)
k (t), соответствующие одной и той же вершине

в различных симплексах, будут совпадать, т.е. управление u(t, x) непрерыв-
но по x. Заметим, что в силу выпуклости множества P достигается условие
u(t, x) ∈ P.
Запишем производную функции V (i)(t, x̃) по направлению � = (�t, �x) ∈

∈ R
nx+2:

dV (i)

d�
= �t〈x̃, K̇(i)H̃(i)x̃〉+ 〈�x, [K(i)H̃(i) + (H̃(i))T(K(i))T]x̃〉.(11)

В [13] было показано, что при � = (�t, �x)
T, где �t = 1, �x = Ã(i)x̃+ B̃(i)u+

+ C̃v(i), справедлива оценка

dV (i)

d�
(t, x̃) � 〈x̃, [K̇(i) + Z(i)]H̃(i)x̃〉,(12)

где матрица Z(i) известна и выражается через коэффициенты K(i)(t), коэф-
фициенты Ã(i)(t), B̃(i)(t), C̃ кусочно-линейной системы (5), а также матри-
цы Y (i)(t), задающие управления в вершинах разбиения. Полученная оценка
справедлива для любых допустимых помех v(i) ∈ Q(i)(t).
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Приравнивая выражения K̇(i) + Z(i) к нулевой матрице, получим систе-
му матричных дифференциальных уравнений, которая и задает изменение
функции V (i)(t, x̃) с течением времени:

K̇(i)(t) + Z(i)(t) = 0, t ∈ [t0, t1], i = 1, N.(13)

Тогда из (12)–(13) следует, что вдоль любой траектории системы (5) в каж-
дом симплексе Ω(i) производная функции будет не возрастать. Далее бу-
дет показано, как модифицировать уравнения (13), чтобы полученная функ-
ция V (i)(t, x̃) была непрерывной и, таким образом, невозрастание производ-
ной было бы обеспечено и при переходе через границу симплекса. Это может
быть использовано для построения гарантированной априорной оценки от-
клонения конечной точки траектории от целевого множества.

4.3. Граничные условия

Для решения системы (13) необходимо задать граничные условия в конеч-
ный момент времени t = t1. Для этого необходимо построить кусочно-квад-
ратичную оценку сверху функции φX1 , представив которую в виде (9), мож-
но определить K(i)(t1). В частности, если границей множества X1 является
гиперповерхность второго порядка, то справедливо представление φX1(x) =
= 〈x̃, K̂x̃〉 при некоторой матрице K̂ = K̂T. Следовательно, в конечный мо-
мент времени в каждом симплексе можно выбрать значения параметров
функции V (i)(t1, x̃), равные

K(i)(t1) = K̂(H̃(i))−1.(14)

В общем случае для любой дважды дифференцируемой функции φX1 мож-
но сконструировать кусочно-аффинную оценку сверху [12], которая является
частным случаем кусочно-квадратичной и приводит к условиям типа (14).
При этом функция V (i)(t, x̃) в конечный момент времени t = t1 будет непре-
рывной по x̃ на всем множестве Ω× {1}.

4.4. Сглаживание функции

Отметим, что при решении задачи Коши (13)–(14) функция V (i)(t, x), опре-
деляемая выражением (9), будет иметь разрывы на границах симплексов. Это
связано с тем, что каждый столбец матрицы K(i)(t) определяет коэффициен-
ты кусочно-аффинной функции 〈k(i)l (t), x̃〉 в некоторой вершине разбиения gl,
но каждая такая точка, вообще говоря, является вершиной сразу нескольких
симплексов. Поскольку матрицы Z(i) в оценке (11) для каждого симплекса
строятся независимо друг от друга, то значения производных k̇

(i)
l (t) опреде-

ляются сразу несколькими несовместными условиями.
Таким образом, требуется модифицировать оценку (11), чтобы получен-

ная функция V (i)(t, x) была непрерывна. Предложим альтернативный способ
оценки матриц Z(i), нежели в [13].
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Представим (13) в векторной форме, т.е. запишем дифференциальное
уравнение для каждого столбца матрицы K(i):

k̇
(i)
l (t) + z

(i)
l (t) = 0, t ∈ [t0, t1], i = 1, N, l = 1, nx + 1,(15)

где z(i)l – соответствующий столбец матрицы Z(i). Это позволяет переписать
оценку (12) в следующем виде:

dV (i)

d�
(t, x̃) � 〈x̃, [K̇(i) + Z(i)]H̃(i)x̃〉 = 〈x̃, K̇(i)H̃(i)x̃〉+ 〈x̃, Z(i)H̃(i)x̃〉 �

� 〈x̃, K̇(i)H̃(i)x̃〉+ 〈x̃, Z(i)α(i)(x)〉 = 〈x̃, K̇(i)H̃(i)x̃〉+
nx+1∑
l=1

α
(i)
l (x)〈x̃, z(i)l 〉.

(16)

При каждом фиксированном t ∈ [t0, t1] определим в каждой вершине g
(i)
l

следующую вспомогательную задачу линейного программирования относи-
тельно нового неизвестного вектора ẑ

(i)
l :⎧⎨⎩〈ẑ(i)l , g̃

(i)
l 〉 → min,

〈ẑ(i)l , g̃
(j)
k 〉 � 〈z(j)ν(i,l,j), g̃

(j)
k 〉 ∀j : g

(i)
l ∈ Ω(i) ∩Ω(j), k = 1, nx + 1,

(17)

где ν(i, l, j) – локальный номер вершины g
(i)
l ∈ Ω(i) ∩ Ω(j) в симплексе Ω(j).

Из решений ẑ
(i)
l аналогичным образом составим матрицы Ẑ(i). Учитывая

ограничения задачи (17) и линейность рассматриваемых функций, можем
продолжить неравенство (16):

dV (i)

d�
(t, x̃) � 〈x̃, [K̇(i) + Z(i)]H̃(i)x̃〉 � 〈x̃, K̇(i)H̃(i)x̃〉+

nx+1∑
l=1

α
(i)
l (x)〈x̃, z(i)l 〉 �

� 〈x̃, K̇(i)H̃(i)x̃〉+
nx+1∑
l=1

α
(i)
l (x)〈x̃, ẑ(i)l 〉 = 〈x̃, [K̇(i) + Ẑ(i)]H̃(i)x̃〉.

Заметим, что решения задач (17), соответствующие одной и той же вер-
шине в различных симплексах Ω(i), будут совпадать (в случае, если задача
линейного программирования допускает неединственное решение, их можно
выбрать одинаковыми). Следовательно, кусочно-заданная функция цены (9),
полученная при решении задачи Коши{

K̇(i) + Ẑ(i) = 0, i = 1, N, t ∈ [t0, t1],

K(i)(t1) = K̂(H̃(i))−1, i = 1, N,
(18)

будет непрерывной по (t, x̃) во всей рассматриваемой области. При этом
функционал в задаче (17) соответствует значениям V (i)(t, x̃) в вершинах сим-
плексов и, таким образом, способствует уменьшению значений функции в
этих точках.
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5. Алгоритм выбора управления

Прежде чем приступить к решению задачи (18), необходимо определить
управления y

(i)
k из (10) в вершинах симплексов, чтобы на основе этих значе-

ний построить матрицы Ẑ(i). В [11–13] они выбирались так, чтобы в каждом
симплексе Ω(i) минимизировать производную (11) функции V (i)(t, x̃) вдоль
траектории движения, но с учетом кусочно-заданного характера этой функ-
ции возникала неоднозначность при выборе значений y

(i)
k . Для ее устранения

приходилось дополнительно корректировать управления, что негативно ска-
зывалось на полученном решении.
В данной работе на примере обучения с подкреплением демонстрируется,

что метод допускает использование управлений, полученных на основе аль-
тернативных подходов, в результате чего построенная аппроксимация функ-
ции цены (6) может оказаться более точной.
Обучение с подкреплением [16] – это раздел машинного обучения, в ко-

тором поведение агента корректируется при многократном взаимодействии
с окружающей средой в зависимости от получаемых от нее вознаграждений
при каждом совершенном действии. Применительно к рассматриваемой зада-
че агент реализует управляющую стратегию u = u(t, x), а в качестве функции
мгновенного вознаграждения выберем

L(t, x) =
{
0, t < t1,

−d2(x,X1), t = t1,
(19)

где d(x,X1) обозначает расстояние от точки x до множества X1.
Proximal Policy Optimization (PPO) – это один из методов обучения с под-

креплением, где стратегия управления представлена с помощью нейронной
сети, веса которой обновляются методом градиентного спуска при оптими-
зации некоторого функционала качества. Функционал качества основан на
максимизации кумулятивного вознаграждения по окончании эксперимента,
однако представляет собой более сложное выражение [17], чтобы обеспечить
стабильный процесс обучения.
Преимуществом алгоритма PPO является возможность его применения к

непрерывным системам, в том числе к системам вида (1). Этим свойством
обладают и некоторые другие алгоритмы, например DDPG [24] и SAC [25].
Они также могут быть использованы в предложенном подходе, однако в рас-
смотренных далее примерах показали меньшую точность при переводе систе-
мы (1) в окрестность целевого множества.
Пусть множество P допускает конечномерную параметризацию, в та-

ком случае вектор u ∈ P определяется набором параметров θ ∈ R
r, где θi ∈

∈ [θmin
i , θmax

i ], i = 1, r, и цель заключается в определении этого набора для
каждой фиксированной позиции (t, x). Но поскольку алгоритм PPO рассчи-
тан на стохастические стратегии, обычно предполагается, что θ – это случай-
ный вектор, имеющий многомерное нормальное распределение θ ∼ N (μ,Σ)
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с диагональной матрицей ковариации. При использовании алгоритма сперва
обучается нейронная сеть, которая предсказывает параметры этого распре-
деления, а затем, во время расчета значений u(t, x), генерируются реализа-
ции соответствующего случайного вектора. Имея обученную нейронную сеть,
легко получить детерминированное управление: для этого вместо генерации
случайного вектора достаточно взять соответствующие математические ожи-
дания: θ = μ.
Отметим, что на значения параметров θi наложены интервальные ограни-

чения, в то время как носителем нормального случайного вектора является
все пространство R

r. Чтобы удовлетворять требованиям, на практике значе-
ния параметров “обрезаются” [26] и новые значения получаются по формуле
θ̃i = min{θmax

i ,max{θi, θmin
i }}, хотя допускается использование других преоб-

разований. Кроме того, для указанных случайных величин можно использо-
вать распределения с ограниченным носителем [27].
Такие детерминированные управления на основе нейросетевой модели,

удовлетворяющие ограничению (2), будем обозначать как û(t, x). Результи-
рующее кусочно-аффинное управление, используемое в данной работе, опре-
деляется по формуле (10):

u(t, x) =

nx+1∑
k=1

α
(i)
k (x)û(t, g

(i)
k ), x ∈ Ω(i).(20)

Заметим, что в силу устройства нейросети функция û(t, x) будет непре-
рывной по (t, x). Отсюда следует, что при стремлении диаметра разбиения
множества Ω на симплексы к нулю итоговое управление (20) будет поточеч-
но сходиться к û(t, x).

6. Основной результат

Введение вышеописанных конструкций позволяет доказать следующую
теорему.

Те ор ем а 1. Пусть матричные функции K(i)(t) ∈ R
(nx+1)×(nx+1) явля-

ются решением задачи Коши (18). Пусть V (t, x̃) – непрерывная кусочно-
квадратичная функция, определенная на множестве [t0, t1]×Ω×{1}, которая
в каждом симплексе Ω(i) задается равенством V (i)(t, x̃) = 〈x̃,K(i)(t)H̃(i)x̃〉.
Тогда множество W int

ε (t0) =
{
x ∈ Ω

∣∣∣ V (t0, x̃) � ε
}
(в предположении его

непустоты) является внутренней оценкой множества разрешимости ис-
ходной нелинейной системы (1):

W int
ε (t0)⊆Wε(t0, t1,X1).

Доказательство теоремы основано на анализе траекторий нелинейной си-
стемы (1), замкнутой управлением вида (10), однако не зависит от способа
нахождения векторов y(i)k (t) ∈ P в вершинах симплексов и проходит по схеме,
приведенной в [13].
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7. Примеры работы алгоритма

7.1. Нелинейная система

Рассмотрим движение маятника на тележке с учетом силы трения [28],
которое описывается системой уравнений{

ẋ1 = x2,
ẋ2 = −w2 sin(x1)− 2γx2 − w2 cos(x1)u,

(21)

где ω и γ являются параметрами, x1 и x2 – угол отклонения маятника и
угловая скорость соответственно, управление u соответствует ускорению те-
лежки. Пусть ω = 1, γ = 0,1 и требуется перевести систему из начального
положения (−0,3, 0,6)T при t0 = 0 в малую окрестность начала координат в
момент времени t1 = 1. На управление наложено ограничение u ∈ [−1, 1].
В качестве простейшей модели нейронных сетей, используемых в алго-

ритме PPO, предлагается выбрать двухслойный перцептрон [29] с функцией
активации tanh (x). При обучении было сгенерировано 10 000 пробных тра-
екторий системы (21), стартующих из различных случайных точек x0 ∈ Ω
в момент времени t0, и стратегия управления û(t, x) обновлялась на основе
штрафов (19). На рис. 1 представлена траектория, полученная при использо-
вании алгоритма PPO без дополнительных модификаций. Расстояние между
конечной точкой траектории и началом координат составляет 0,027.
Для расчета кусочно-квадратичной функции (9) сперва были зафиксиро-

ваны вершины gk ∈ R
2, расположенные на прямоугольной сетке со сторонами

длины Δ = 0,1, которые затем были использованы для разбиения множества
Ω = [−1, 1] × [−1, 1] на N = 800 равных симплексов. На рис. 2 представле-
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Рис. 1. Траектория на основе нейросетевого управления û(t, x).
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Рис. 2. Траектория на основе управления из [13].
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Рис. 3. Траектория на основе аппроксимации (20) нейросетевого
управления û(t, x).

ны результаты, полученные с помощью алгоритма выбора управлений (10)
из [13]: пунктирная линия обозначает границу множества, куда априорно га-
рантируется попадание траектории системы; расстояние между x(t1) и целе-
вым множеством составляет 0,043.
На рис. 3 представлена траектория, полученная описанной в текущей ра-

боте комбинацией методов при том же разбиении на симплексы. Расстояние
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Рис. 4. Нейросетевое управление û(t, x(t)) и результирующее
управление u(t, x(t)).
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Рис. 5. Граница множества разрешимости при t = t0 и траектории
системы (21) при замыкании результирующим управлением u(t, x).

до начала координат в этом случае равно 0,023, при этом изменение ошиб-
ки объясняется разницей между исходным нейросетевым управлением û(t, x)
и его аппроксимацией (20). На рис. 4 приведены управления, соответствую-
щие траекториям, изображенным на рис. 1 и рис. 3. Видно, что априорная
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погрешность представленного метода меньше, чем в алгоритме [13]. Приве-
денный пример подтверждает, что в каждом из случаев априорная оценка,
полученная из функции цены (9), является гарантированной.
На рис. 5 непрерывными линиями обозначены траектории, полученные

предложенным методом при старте из различных начальных точек; стрел-
ками обозначено направление движения вдоль траекторий. Кроме того,
пунктирной линией обозначена граница множества разрешимости в клас-
се кусочно-непрерывных программных управлений, вычисленная на основе
принципа максимума Л.С. Понтрягина [30, с. 336–344].

7.2. Линейная система

Чтобы получить более полное представление о точности предложенного
подхода, рассмотрим линейную систему

ẋ1 = x2, ẋ2 = u(22)

на отрезке t ∈ [0, 1]. В данном случае не требуется применять описанный ра-
нее механизм кусочной линеаризации, однако такая система хорошо изучена
в литературе (например, в [30]). Пусть управление удовлетворяет ограниче-
нию u ∈ [−2, 2] и требуется перевести систему в начало координат в момент
времени t = 1. Тогда может быть получено, что точка x0 = (0,5, 0)T лежит на
границе множества разрешимости в момент t = 0 и достигается на кусочно-
постоянном управлении u∗(t) = 2 sign(t− 0,5).
Для численных экспериментов была выбрана нейросетевая модель той же

структуры, что и в предыдущем примере. Модель обучалась на персональ-
ном компьютере в течение одного часа, после чего при зафиксированных ве-
сах нейросети при различных диаметрах разбиения на симплексы Ω(i) были
построены кусочно-квадратичные функции вида (9). Рассматривалось мно-
жество Ω = [−1,5, 1,5]× [−1,5, 1,5].
На рис. 6 обозначены априорная оценка попадания в начало координат из

точки x0 при шаге прямоугольной сетки Δ = 0,25 (что соответствует разбие-
нию на 288 представленных на рисунке симплексов) и полученная траекто-
рия, а на рис. 7 приведено соответствующее управление u(t, x(t)) вида (20).
На рис. 8 изображено множество разрешимости, вычисленное на основе прин-
ципа максимума Л.С. Понтрягина, а также траектории, полученные предло-
женным методом при старте из различных начальных точек.
На рис. 9 для той же начальной точки x0 = (0,5, 0)T приведены зависимо-

сти априорной и апостериорной погрешностей от числа симплексов разбие-
ния Ω(i) множества Ω. При уменьшении диаметра сетки апостериорное зна-
чение погрешности сходится к 0,104, что соответствует точности при исход-
ном нейросетевом управлении û(t, x). Отметим, что эта точность может быть
повышена за счет рассмотрения других нейросетевых моделей, возможно,
с бóльшим числом параметров. Кроме того, из рис. 9 следует, что априорная
погрешность снижается, однако с некоторого момента вновь начинает возрас-
тать. Такое увеличение погрешности объясняется несовершенством вспомо-
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Рис. 6. Траектория системы (22) и априорная оценка попадания
в целевую точку.
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Рис. 7. Результирующее управление u(t, x(t)) для системы (22),
а также оптимальное управление u∗(t).

гательных задач оптимизации (17): их решения в соседних вершинах могут
значительно отличаться друг от друга, что влияет на устойчивость мето-
да при мелком диаметре разбиения. Эта проблема может быть устранена за
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Рис. 9. Отклонение от целевой точки x1 = (0, 0)T в зависимости от
количества симплексов разбиения.

счет замены функционала в (17) или же за счет введения дополнительных
“регуляризующих” слагаемых в систему (18), использование которых было
предложено в [11].
На рис. 10 указано время вычисления функции цены в зависимости от

числа симплексов при фиксированной нейросетевой стратегии û(t, x). Можно
заметить, что временные затраты линейно растут с увеличением количества
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Рис. 10. Время вычисления функции цены при фиксированной функции û(t, x).

симплексов, и при не слишком мелком диаметре разбиения время вычислений
мало в сравнении со временем обучения нейронной сети.

8. Заключение

Приведенные в данной работе формулы позволяют получить позицион-
ную стратегию управления, решающую задачу приближенно, и кусочно-
аффинную аппроксимацию этой стратегии на множестве симплексов. Послед-
няя используется для построения непрерывной кусочно-квадратичной функ-
ции, задающей внутреннюю оценку множества разрешимости в задаче целе-
вого управления. Для полученного кусочно-аффинного управления справед-
лива гарантированная априорная оценка погрешности попадания траектории
в целевое множество. Предложенный подход может быть использован при ре-
шении задач управления нелинейными системами с небольшой размерностью
фазового пространства.
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АНАЛИЗ УСТОЙЧИВОСТИ СИСТЕМЫ «МОСТ–ПЕШЕХОДЫ»
НА ОСНОВЕ КРИТЕРИЯ ЦЫПКИНА1

Построена новая кибернетическая модель динамики движения системы
«мост–пешеходы» в поперечном направлении с учетом функционального
состояния пешехода. Получено аналитическое выражение для критиче-
ского количества пешеходов, способных раскачать мост, и рассчитана об-
ласть устойчивости системы с помощью частотного критерия Я.З. Цып-
кина для параметров лондонского моста Миллениум. Результаты рабо-
ты показывают, что раскачивание моста может быть связано с малым
нервно-мышечным запаздыванием пешеходов, а не с синхронизацией их
шагов, как считается в ряде существующих публикаций. Полученные ре-
зультаты могут иметь применение и к другим классам колебательных
человеко-машинных систем.

Ключевые слова: устойчивость, надежность конструкций, раскачивание
моста, танцующий мост, лондонский мост Миллениум.
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1. Введение

За последние два столетия произошло несколько десятков инцидентов,
связанных с пешеходными мостами, включая случай качания лондонского
моста Миллениум [1]. Этот мост был возведен в честь наступления третьего
тысячелетия, что отразилось в архитектуре его легкой подвесной конструк-
ции, где тросы находятся ниже уровня палубы. Мост Миллениум является
одним из немногих объектов, о котором собрано много ценных наблюдений.
Например, известно, что поперечные колебания нарастали с ростом количе-
ства пешеходов и затухали, если людей становилось меньше или они полно-
стью останавливались. Инцидент с мостом Миллениум вызвал целую вол-
ну публикаций известных ученых в престижных научных журналах [2–5].

1 Работа поддержана Минобрнауки РФ (проект госзадания 124041500008-1).
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В первых публикациях делался вывод, что большую амплитуду колебаний
вызывает синхронный шаг пешеходов. Это не только соответствовало рас-
пространенному общественному мнению, но и хорошо укладывалось в тео-
рию синхронизации связанных осцилляторов [6]. Однако позже появились
данные наблюдений, которые невозможно объяснить только синхронизаци-
ей, например появление колебаний, не связанных со средней частотой ша-
гов, наличие определенного критического количества пешеходов, способных
раскачать мост [1, 7]. На основании этого ряд ученых выдвинули предпо-
ложение, что синхронизация является следствием, а не причиной раскачки
моста [4, 5, 8–10].
В данной работе предлагается новая модель динамики системы «мост–

пешеходы» в поперечном направлении, учитывающая функциональное со-
стояние пешехода при помощи звена запаздывания. На основе новой модели
предложен новый подход к анализу устойчивости системы.
Известны подходы к анализу системы «мост–пешеходы», в которых модель

системы описывается в терминах механики и действия динамических сил во
временной и частотной областях [11, 12]. Наиболее часто встречающаяся в
литературе динамическая модель моста описывается следующим уравнением
[8, 12, 13]:

Mẍ(t) + Cẋ(t) +Kx(t) = F (t),(1)

где M , C, K – матрицы массы, демпфирования и жесткости, x(t) – вектор
перемещения, F (t) – вектор внешних сил, который определяется как [14]:

F (t) = Gp +
n∑

i=1

Gpαi sin(2πift− φi),(2)

где Gp – вес человека, αi – коэффициент Фурье i-й гармоники, f(t) – частота,
φi – фазовый сдвиг i-й гармоники, i – порядковый номер гармоники, n – общее
число гармоник.
По аналогии с (1) динамику пешеходов описывают как осциллятор со своей

массой, жесткостью и коэффициентом демпфирования. Такой подход проде-
монстрирован для анализа вертикальных колебаний в [15, 16], где система
«мост–пешеходы» имеет вид[

ms 0
0 mc

]{
ẍs(t)
ẍc(t)

}
+

[
cs + cc −cc
−cc cc

]{
ẋs(t)
ẋc(t)

}
+

+

[
ks + kc −kc
−kc kc

]{
xs(t)
xc(t)

}
=

{
fs(t)
fc(t)

}
.

(3)

В (3) m, c и k – масса, коэффициент демпфирования и жесткость соответ-
ственно, индекс s соответствует мосту, c – пешеходу.
Модель перевернутого маятника с жесткой опорой и ограниченная фрон-

тальной плоскостью хорошо отражает основные особенности поведения пе-
шеходов на горизонтально колеблющейся поверхности, включая кинематику
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и кинетику [9, 17]. Одно из допущений такой модели состоит в том, что ко-
лебания поверхности земли не влияют на время шагов пешеходов, что, как
показано в [18], не всегда имеет место в реальности. В этой работе предло-
жен закон управления постановкой ног с учетом запаздывания при контакте
стопы с землей.
Последние достижения в решении проблемы устойчивости пешеходных

мостов изложены в работах [8–10], результаты которых получены на основе
предположения о синхронизации шагов как следствии раскачки моста. Это
условие позволяет составить соотношение баланса амплитуды и фазы между
пешеходами и мостом, откуда можно получить критическое количество пе-
шеходов, удовлетворяющее этому соотношению. Динамика пешехода в [8–10]
описана с помощью осциллятора Ван дер Поля:

f(x, ẋ) = λ(ẋ2 + x2a2)ẋ+ ω2x,(4)

где x – координата центра масс пешехода, λ – демпфирование, a – амплитуда
предельного цикла, ω – частота шагов. В последующей работе авторов [8]
сила F (t), действующая на мост со стороны пешеходов, выражается через
средний коэффициент демпфирования пешехода σ(ωi,Ω), который, в свою
очередь, в большей степени зависит от отношения частоты колебаний мо-
ста Ω к частоте шагов ωi. Было выяснено, что существует большой диапазон
частот шагов пешеходов и колебаний моста, при котором σ(ωi,Ω) < 0. Это
означает, что при некотором критическом числе пешеходов общее модаль-
ное демпфирование моста становится отрицательным. В результате авторами
предложена простая формула вычисления критического числа пешеходов:

Ncr = −c0/σ,(5)

где c0 – коэффициент пассивного демпфирования моста.
Статья организована следующим образом. В разделе 2 дается постанов-

ка задачи. Раздел 3 содержит описание модели системы «мост–пешеходы».
В разделе 4 представлен анализ устойчивости системы «мост–пешеходы» и
аналитические выражения для критического количества пешеходов. Резуль-
таты и возможности их применения описаны в разделе 5.

2. Постановка задачи

В существующей литературе используется подход к моделированию пеше-
ходов, сосредоточенный на понимании механизмов шагания, которые появ-
ляются в результате управления его центральной нервной системы. Однако
высокая чувствительность человека к колебаниям поверхности вызывает у
него ответную реакцию и последующие мышечные действия, что показыва-
ет необходимость учитывать человека как звено замкнутой системы с его
физическими и психофизиологическими свойствами. Такой подход известен
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Рис. 1. Общая структурная схема системы «мост–пешеходы».

в области человеко-машинных систем и основан на описании функциональ-
ного состояния человека [19], но до сих пор не использовался для описания
динамики походки.
Не касаясь причин раскачивания моста, будем считать, что люди идут по

нему со средней частотой шагов, действуя на поверхность силой своего ве-
са и одновременно пытаясь сохранить равновесие, ориентируясь на зритель-
ную и вестибулярную информацию от центральной нервной системы. Соот-
ветствующая такой системе блок-схема показана на рис. 1. В связи с этим
в данной работе предлагается разработка кибернетической модели системы
«мост–пешеходы» и исследование ее на предмет возможности использования
для проектирования и анализа колебаний конструкции моста методами тео-
рии автоматического управления. Для этого необходимо описать динамику
движения каждого компонента системы «мост–пешеходы» с помощью дина-
мических звеньев.

3. Модель системы «мост–пешеходы»

Человек естественным образом демонстрирует разнообразные виды дви-
жения, из-за своей хаотичности трудно поддающиеся описанию. Так, извест-
ны работы, где отдельно рассматривается влияние на конструкцию группы
идущих [15], бегущих [20] и подпрыгивающих людей [21]. Обозначение кон-
кретных задач и разделение движений, выполняемых человеком, позволяет
ввести приближенное математическое описание его действий, отражающее
основные свойства локомоции. Их применение – область проектирования дву-
ногих роботов и человеко-машинных систем. Касательно последних, широко
известны результаты кибернетической модели управляющих действий пилота
в задаче слежения за ошибкой и скоростью отклонения тангажа, что помогло
понять причины явления колебаний, вызванных летчиком [22, 23]. Результа-
ты исследований взаимодействия человека–пилота и летательного аппарата
выявили стремление человека управлять оптимальной системой, что прояв-
ляется как свойство адаптации его нервно-мышечной динамики к изменяю-
щейся динамике системы [19, 22–25].
Оптимальность движений человека часто упоминается в контексте энер-

гетических затрат, необходимых для реализации того или иного движения.
Такая характеристика может быть использована для периодических и по-
вторяющихся движений, к которым относится ходьба на большом интервале
времени. При передвижении по неподвижной поверхности первоочередной
задачей является сохранение равновесия, что человек решает рефлекторно,
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Визуальный канал
Вестибулярный канал

Kxs Kx G(s) Wb(s)
ex x*

x

x
ex Fx* = A sin(ωcrt)

Рис. 2. Контур системы «мост–пешеходы».

не задумываясь. При передвижении по неустойчивой поверхности человеку
приходится прикладывать усилия, или управление, чтобы сохранить равно-
весие, для чего, по-видимому, необходимо время на переработку информации
центральной нервной системой и принятие решений, что в свою очередь вно-
сит некоторую величину запаздывания.
Наглядный пример взаимодействия человека и конструкции известен из

повседневной жизни, когда при движении по довольно легкому длинному
подвесному мосту на двухколесном транспортном средстве (велосипеде) мост
начинает ощутимо раскачиваться. При этом чем активнее пытается балан-
сировать человек, тем сильнее раскачивается мост. Во всех случаях смяг-
чить колебания помогает осознанное снижение усилий человека по сохране-
нию равновесия, или снижение пропорционального коэффициента усиления
«в голове».
Кибернетическая модель человека в частотной области имеет вид структу-

ры, каждый блок которой описывает процесс восприятия, выработку страте-
гии и отработку управляющих действий [25, 26]. Выделяют три основных сти-
мула восприятия информации: зрительный, вестибулярный и проприоцептив-
ный. В рамках структурного подхода считается, что процессы переработки
информации и выработки стратегии действий, происходящие в центральной
нервной системе, для каждого стимула восприятия схожи. Каждый выпол-
няемый процесс требует определенного времени, что достаточно хорошо опи-
сывается звеном запаздывания, величина которого возрастает по мере услож-
нения процесса управления. Упомянутое выше свойство адаптации человека
отражается с помощью блоков коррекции для каждого воспринимаемого сти-
мула, суммарная реакция которых затем поступает в моторную систему. Эта
структура определяет передаточную функцию управляющих действий чело-
века [25, 27–29].
Наиболее изученной является модель коррекции, вырабатываемой чело-

веком на основе визуального восприятия командного стимула. Многие ис-
следования показали, что человек способен производить усиление, диффе-
ренцирование и сглаживание воспринимаемого сигнала [27–29]. Модель пе-
шехода, использующего для хождения визуальный и вестибулярный каналы
восприятия информации, показана на рис. 2. Согласно этой модели пешеход
пытается компенсировать рассогласование по углу и угловой скорости крена
для удержания равновесия при ходьбе. Таким образом, пешеход находится в
замкнутом контуре, и его поведение зависит от динамики моста.
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Передаточную функцию модели пешехода от ошибки отклонения угла к
углу крена можно записать в виде [24, 30, 31]

Wp(s) = NKxsKẋG(s),(6)

G(s) =
T 2e−τs

s2 + 2ξTs+ T 2
,(7)

где N – количество пешеходов, Kx иKẋ – коэффициенты усиления, G(s) – пе-
редаточная функция нервно-мышечной динамики пешехода, ξ и T – коэффи-
циент демпфирования и частота, τ – время нервно-мышечного запаздывания.
Заметим, как показано в [31], Kẋ имеет отрицательное значение.
Таким образом, с учетом модели моста (1) и (6) передаточная функция

разомкнутой системы «мост–пешеходы» от смещения в поперечном направ-
лении моста x к ошибке отклонения ex имеет вид

W (s) = Wp(s)Wb(s) =
NKpT

2se−τs

(s2 + 2ξTs+ T 2)(Ms2 + Cs+K)
,(8)

где Kp = KxKẋ.

4. Анализ устойчивости системы «мост–пешеходы»

Переменными параметрами системы (8) являются количество пешехо-
дов N и величина нервно-мышечного запаздывания τ . Поперечная состав-
ляющая силы реакции опоры, выражаемая через коэффициент Kp, также
может меняться в зависимости от частоты шагов в большую или меньшую
сторону, но в данной работе рассматривается только случай средней частоты,
равной 5,4 рад/с. Экспериментально было получено, что при средней частоте
шагов пешеход действует на поверхность в поперечном направлении с силой
около 38 Н [32]. Чтобы получить такую силу, согласно структуре на рис. 2
произведение коэффициентов KxKẋ должно быть равно 48.
Остальные параметры системы принимаются постоянными. Известны сле-

дующие параметры лондонского моста Миллениум: масса M = 81000 кг,
жесткость K = 3390 733 кг/с2, C = 7681 кг/с, собственная частота Ω =
=
√
K/M = 6,5 рад/с [8, 33]. Параметры нервно-мышечной динамики пеше-

хода T = 30, ξ = 0,7 [31].
Комфортное время, необходимое на переработку информации в централь-

ной нервной системе и передачу сигнала по нервно-мышечному волокну для
летчиков в режиме ручного управления составляет около 0,2 с [25, 27]. Из-
за движения поверхности моста изменяется угол ориентации пешехода, что
является для него нестандартной ситуацией и запускает процесс адаптации
к новым условиям, который отражается в настройке параметров (6), в том
числе времени запаздывания. В зависимости от внешних обстоятельств чело-
век может как уменьшать, так и увеличивать время нейро-мышечного запаз-
дывания. Так, падение запаздывания до 0,08 с «. . . связано с возрастающим
нейромускульным напряжением» [22].
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Рис. 3. Амплитудная частотная характеристика системы «мост–пешеходы»
с учетом звена нервно-мышечной динамики и без него.

Для оценки величины времени запаздывания и соответствующей ему ча-
стоты, влияющих на устойчивость системы, удобно использовать частотный
критерий Я.З. Цыпкина [34, 35]. Критическая частота ω0i определяется из
уравнения

|W (ω0i, N)| − 1 = 0,(9)

где |W | – амплитудная характеристика разомкнутой системы без запаздыва-
ния (8), после чего полученное ω0i подставляется в выражение для соотно-
шения фаз, которое в общем случае имеет вид

τ0i(n) =
θ(ω0i)

ω0i
+

2πn

ω0i
, n ∈ N,(10)

где θ(ω0i) = arctg(W (ω0i)). Это критическое время запаздывания τ0i опреде-
ляет переход корней через мнимую ось и, следовательно, границу устойчиво-
сти системы. Исследуемая система будет устойчива, когда (9) не имеет реше-
ния относительно ω0i, т.е., когда годограф системы лежит внутри единичной
окружности.
Применим критерий (9), (10) к (8). Заметим, что амплитудно-частотная ха-

рактеристика (АЧХ) (8) совпадает с АЧХ без учета звена нервно-мышечной
динамики в широком диапазоне частот 1–10 рад/с (рис. 3). Это позволяет
сделать предположение, что для оценки устойчивости системы можно пре-
небречь звеном нервно-мышечной динамики в данном диапазоне частот, и
тогда (8) можно записать как

W̃ (s) =
NKpse

−τs

(Ms2 + Cs+K)
.(11)

Перейдем в (8) от s к jω и выделим вещественную и мнимую части без
учета звена запаздывания:

W̃ (jω) = KpN

[
jω(K −Mω2)

(K −Mω2)2 + C2ω2
+

Cω2

(K −Mω2)2 + C2ω2

]
.(12)
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Затем (9) можно записать как

K2
pN

2
[
(Cω2)2 − ω2(K −Mω2)2

]
[
(K −Mω2)2 + C2ω2

]2 − 1 = 0,(13)

раскрыв скобки, получим уравнение восьмого порядка:

A8ω
8 +A6ω

6 +A4ω
4 +A2ω

2 +A0 = 0,(14)

где

A8 = −M4, A6 = 4KM3 −K2
pM

2N2 − 2C2M2,

A4 = 2KK2
pMN2 − 6K2M2 + C2K2

pN
2 + 4C2KM,

A2 = 4K3M −K2K2
pN

2 − 2C2K2, A0 = −K4.

Выполним замену переменной в (14) ω2 = t. Как будет показано ниже, это
необходимо для анализа полученного решения. Решение (14) относительно ω,
полученное в символьном виде с помощью MATLAB, представляет собой сле-
дующее выражение:

t2=

[
2

4M2

√
C4+

σ7

2
+4KM3σ3+3C2K2

pN
2−2C2M2σ3−σ2−K2

pM
2N2σ3−σ1−2C2+

+2M2

√
σ42

4M8
+

σ6−8MK3+σ5
σ4

+
−C4+σ2+C2K2

pN
2−6K2M2+σ1

M4
−(15)

−K2
pN

2 + 4KM

] 1
2

,

где

σ1 = 2KKp
2MN2, σ2 = 4C2KM,

σ3 =

√
σ7

4M4
− 2K2

M2
− 8K3M

σ4
+

σ6
σ4

+
2C2Kp

2N2

M4
+

σ5
σ4

,

σ4 = 2C2M2 +Kp
2M2N2 − 4KM3, σ5 = 2K2Kp

2N2,

σ6 = 4C2K2, σ7 = Kp
4N4.

Выражение (15) стоит под знаком квадратного корня и зависит от пере-
менного параметра количества пешеходов N . Это означает, что численно (15)
может принимать любые значения, в том числе комплексные. Физический
смысл решаемой задачи подразумевает только действительные величины, по-
этому необходимо ввести условие существования действительного неотрица-
тельного решения. Одним из условий является неотрицательность подкорен-
ного выражения (15), исходя из чего в символьном виде с помощью MATLAB
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получены все условия действительного решения:

N ∈R ∧ 2M2

√
σ5

2

4M8
+

σ7−8MK3+σ6

σ5
+

−C4+σ3+C2Kp2N2−6K2M2+σ1

M4
+

+2

√
C4+

σ8

2
+4KM3σ4−2C2M2σ4+3C2Kp2N2−σ3−Kp2M2N2σ4−σ1−σ2 =

= 2C2−4KM ∧ 2C2+σ2 �= 4KM ∧ 0<N,(16)

где

σ1 = 2KKp2MN2, σ2 = Kp2N2, σ3 = 4C2KM,

σ4 =

√
σ8

4M4
− 2K2

M2
− 8K3M

σ5
+

σ7
σ5

+
2C2Kp2N2

M4
+

σ6
σ5

,

σ5 = 2C2M2 +Kp2M2N2 − 4KM3, σ6 = 2K2Kp2N2,

σ7 = 4C2K2, σ8 = Kp4N4.

Проанализировав все вышеописанные ограничения численно и аналитиче-
ски в MATLAB, получим, что наименьшее N , при котором существует дей-
ствительное решение, вытекает из следующего условия:

K4
pN

4 + (4MKK2
p − 2C2K2

p)N
2 + C4 − 4MKC2 � 0.(17)

Приравняв левую часть (17) к нулю и сделав замену N2 = t2, получим
выражение для дискриминанта:

D2 = (4MKK2
p − 2C2K2

p)
2 − 4K4

p (C
4 − 4MKC2) = 16K4

pM
2K2,(18) √

D2 = ±4K2
pMK,(19)

тогда корни (17) можно найти из выражения

t12 =
−4MKK2

p + 2C2K2
p + 4K2

pMK

2K4
p

,(20)

t22 =
−4MKK2

p + 2C2K2
p − 4K2

pMK

2K4
p

.(21)

Подставив численные параметры в (20) и (17), получим, что t12 > 0 и
t22 < 0. Далее потребуется выполнить обратную замену t2 на N2 и извлечь
корень из t2, поэтому сразу отбросим t22 < 0, тогда

N2 =
−4MKK2

p + 2C2K2
p + 4K2

pMK

2K4
p

,(22)
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Рис. 4. Амплитудно-фазовая частотная характеристика разомкнутой системы
при различном количестве пешеходов.

откуда, оставив только положительный корень, получим:

N =
C

Kp
.(23)

Подставив в (23) параметры системы, получим N = 160,0208, т.е. крити-
ческое количество пешеходов, полученное на основе критерия Я.З. Цыпкина
NC

cr = 160. Таким образом, это – максимально возможное значение, не за-
висящее от запаздывания, при котором сохраняется устойчивость системы.
Графическое решение (9) показано на рис. 4, численный результат которого
совпадает с (23). Дальнейшее увеличение N приводит к пересечению годо-
графа с единичной окружностью в двух точках. Так, например, при N = 167
получаем два решения ω01 = 6,45 рад/с и ω02 = 6,48 рад/с, соответствующие
точки которых обозначены на рис. 4. Поскольку ω02 > ω01, то τ02 < τ01 и τ02
является критическим временем запаздывания, которое для данного годогра-
фа можно найти из выражения

τ02 =
π − θ(ω02)

ω02
.(24)

Подставив численные значения в (24), получим τ02 = 0,086 с. Таким об-
разом, для N = 167 критическим для устойчивости запаздыванием является
τ02 = 0,086 с, что соответствует избыточному нервно-мышечному напряже-
нию человека [22].
Дальнейшее увеличение количества пешеходов приводит к росту крити-

ческого запаздывания. Иллюстрация зависимости количества пешеходов от
нервно-мышечного запаздывания N(τ0), полученная из решения (9) и (24),
показана на рис. 5. Из рисунка видно, что область устойчивости ограничена
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количеством пешеходов при малых запаздываниях и резко увеличивается в
области нормальных для человека значений запаздывания.
Зависимость амплитуды колебаний моста от времени при воздействии

250 пешеходов, идущих со средней частотой 5,4 рад/с и имеющих различ-
ное запаздывание, изображена на рис. 6. При нормальном τ2 = 0,2 с мост
демонстрирует устойчивые колебания с амплитудой около 20 см, тогда как
нервно-мышечное напряжение, характерное для меньшего τ1 = 0,05 с, приво-
дит к постепенному нарастанию амплитуды колебаний.
На рис. 7 показана амплитудно-фазовая частотная характеристика

(АФЧХ) системы «мост–пешеходы» при различной величине нервно-мышеч-
ного запаздывания (0,02 и 0,2 с), которое вносит соответствующий фазовый
сдвиг между входом и выходом системы.
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Таким образом, на устойчивость системы влияет не только количество
пешеходов, но и величина запаздывания, которую они могут вносить в силу
особенности работы нервно-мышечной системы, что ранее не принималось во
внимание при анализе системы «мост–пешеходы».

5. Заключение

В работе предложен новый подход к исследованию устойчивости человеко-
машинных систем с колебательной динамикой, таких как система «мост–
пешеходы». Рассмотрена линейная модель замкнутой системы «мост–пеше-
ходы», в которой учтена не только динамика мышц пешеходов, но и процессы,
протекающие в центральной нервной системе. Такой подход позволяет опи-
сать замкнутую систему в виде передаточной функции, включающей звено
запаздывания, и оценить устойчивость системы методами теории автомати-
ческого управления.
Применение предложенного подхода продемонстрировано на примере рас-

качки лондонского моста Миллениум при движении по нему пешеходов в день
его открытия. При помощи частотного критерия Я.З. Цыпкина для различ-
ных величин запаздывания получены условия на число пешеходов, при кото-
рых не нарушается устойчивость замкнутой системы. Численные результаты
показывают, что значительное раскачивание моста можно объяснить умень-
шением нервно-мышечного запаздывания пешеходов. Другими словами, из-за
высокой чувствительности пешеходов к незначительным колебаниям поверх-
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ности им требуется некоторое время для адаптации к новым условиям, что
проявляется как излишнее нервно-мышечное напряжение. Быстрая реакция
пешехода вносит небольшой фазовый сдвиг между входом и выходом систе-
мы «мост–пешеходы», приводящий к раскачиванию моста и потере устойчи-
вости, тогда как замедленная реакция вносит фазовый сдвиг около 90 град,
способствующий стабилизации.
Предложенный подход позволяет более детально подойти к анализу и про-

ектированию конструкций, используемых людьми и обладающих колебатель-
ной динамикой. Дальнейшие исследования могут быть направлены на уточ-
нение параметров модели нервно-мышечной динамики, учет нелинейностей
модели моста и влияния внешних возмущений.
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АЛГЕБРАИЧЕСКИЕ МЕТОДЫ СИНТЕЗА МОДЕЛЕЙ
НА ОСНОВЕ ГРАФИЧЕСКОГО ПРЕДСТАВЛЕНИЯ АВТОМАТОВ

Рассматриваются вопросы моделирования объектов и систем на основе
графического представления автоматов с использованием алгебраических
методов. Решается задача синтеза автоматов на основе построения алгеб-
ры их графоидов. С этой целью существующие операции над автоматами
переносятся на их графоиды. С учетом дополнительных требований, ко-
торые могут возникать при анализе предметной области, вводятся новые
операции. Тем самым определяется алгебра графоидов автоматов, позво-
ляющая осуществлять синтез графоидов автоматных моделей с помощью
предложенного авторами алгоритма. Доказываются утверждения, под-
тверждающие корректность этого алгоритма. Рассматривается числен-
ный пример синтеза графоида автоматной модели совместного действия
функциональных групп в зоне чрезвычайной ситуации.

Ключевые слова: графоиды автоматов, операции над графоидами, алгеб-
ра графоидов, параллельная синхронная смена состояний автоматов, па-
раллельная асинхронная смена состояний автоматов, недопустимые со-
стояния, недопустимые вершины, синтез графоидов.
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1. Введение

Эффективным аппаратом моделирования динамики функционирования
объектов и сиcтем в различных предметных областях являются конечные
автоматы [1]. Однако с возрастанием сложности моделируемых объектов и
систем значительно увеличивается мощность входного и выходного алфави-
тов и алфавита состояний автомата, что существенно затрудняет процесс мо-
делирования, делает модели весьма громоздкими и затрудняет возможность
интерпретации результатов моделирования.
В этом случае эффективным является использование системного подхо-

да, в соответствии с которым первоначально осуществляется декомпозиция
объекта или системы на составляющие, разработка автоматных моделей от-
дельных составляющих и синтез общей модели [2, 3].
Реализация каждого из перечисленных выше этапов существенно зави-

сит от специфики предметной области моделируемых объектов или систем.
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Наиболее сложным является этап синтеза общей модели, поскольку он в наи-
большей степени влияет на ее адекватность. Например, в [4, 5] использовались
методы теории автоматов для моделирования поведения цифровых двойни-
ков производства на основе алгебры автоматов, которая включала не только
известные, но и введенные авторами операции над автоматами, учитываю-
щие особенности моделируемого объекта. Другие примеры введения пред-
метноориентированных операций над автоматами и использования алгебры
автоматов приведены в [6–8].
Другая проблема, возникающая при синтезе автоматных моделей, заклю-

чается в том, что могут существовать значительные ограничения на выбор
возможных составляющих общей модели. Если модели составляющих долж-
ны соответствовать заданным объектам или системам, то могут накладывать-
ся особые требования к процессу синтеза общей модели, заключающиеся в
необходимости исключения недопустимых комбинаций состояний составляю-
щих общей модели. Примером может служить задача моделирования сов-
местного действия нескольких функциональных групп, участвующих в лик-
видации чрезвычайной ситуации [9, 10]. Ограничения могут быть вызваны,
например, требованиями исключения конфликтов между функциональными
группами или учетом синергетических эффектов при их совместных дейст-
виях [11]. Автоматы, моделирующие функционирование этих групп, высту-
пают в качестве составляющих общей модели процесса ликвидации чрезвы-
чайной ситуации.
Следует заметить, что часто набор состояний составляющих общей модели

бывает полностью известен. В этом случае известно представление автомата
помеченным графом (графоидом), вершины которого соответствуют состоя-
ниям, дуги – переходам между состояниями, а веса дуг описывают реакции
автомата на появление различных входных символов. Указанное обстоятель-
ство позволяет осуществлять нахождение графоида общей модели в резуль-
тате синтеза графоидов автоматных моделей еe составляющих.
Решение указанной задачи может быть получено на основе использова-

ния алгебраических методов. В [12, 13] использовалось понятие алгебры ко-
нечных детерминированных автоматов на основе введения ряда операций их
композиции, которые применимы и для графоидов автоматов. В частности,
устанавливались необходимые и достаточные условия декомпозиции автома-
та в сеть составляющих автоматов на основе вводимых операций и реше-
ния автоматных уравнений с помощью специально введенного языка парных
алгебр. Использованные подходы естественным образом применимы и для
графоидов автоматов, представление которых только дополняется описанием
соответствующих автоматов. Однако не во всех предметных областях реше-
ние, полученное с использованием описанного в этих работах подхода, может
давать содержательный результат, потому что не учитываются возможные
ограничения на совместное функционирование составляющих.
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В связи с этим актуальной является задача разработки универсального
подхода к синтезу графоида общей модели, в котором учитывалось бы нали-
чие ограничений на совместное функционирование моделируемых объектов
или систем. В настоящей работе данная задача решается на основе исполь-
зования алгебраических методов, а также осуществляется обоснование кор-
ректности предлагаемого подхода.

2. Алгебра графоидов автоматов

Под алгеброй A = 〈N ,S〉 в соответствии с [14] будем понимать совокуп-
ность множества N с заданными в нем операциями

S = {f11, f12, . . . , f1n1 , f21, f22, . . . , f2n2 , . . . , fm1, fm2, . . . , fmnm},
где N – носитель, S – сигнатура алгебры ( fkl – l-я k-местная операция).
Графоидом G конечного детерминированного неинициального абстракт-

ного автомата Мили A является четверка [15] (Q,F,X, Y ), где Q – множе-
ство занумерованных вершин, соответствующих состояниям автомата A; F –
оператор, описывающий взвешенные дуги, т.е. переходы между состояния-
ми и соответствующие им выходные символы в зависимости от поступающих
входных символов; X – входной алфавит автомата A; Y – выходной алфавит
автомата A.
Обозначение A〈G будем использовать в том случае, если автомату A со-

ответствует графоид G.
Приведем удобные для дальнейшего использования описания оператора F .
Выражение

F x/yqi = qis(x/y)

означает, что если автомат находится в состоянии, соответствующем вершине
графоида qi и на вход автомата поступает символ x ∈ X , то автомат перейдет
в состояние, соответствующее вершине графоида qis и будет сгенерирован
выходной символ y ∈ Y .
Обозначим

Fqi =
⋃
x∈X
y∈Y

{
F x/yqi

}
.

В этих обозначениях результат выполнения оператора F может быть опи-
сан как{

Fqi =
{
qi1(xj1/yk1), . . . , qil(xjl/ykl), . . . , qini (xjni/ykni )

}
, i = 1, |Q|

}
.

Предполагается, что в общем случае
{
xj1 , . . . , xjni

}
⊆X , т.е. автомат мо-

жет являться частичным.
Оператор F может быть представлен в виде символьной матрицы, эле-

ментами которой являются пары x/y. Описанная в [3] алгебра таких матриц
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упрощает процесс разработки численных методов оперирования с графоида-
ми. Однако при этом необходимо обоснование корректности использования
операций.
Введение понятия алгебры графоидов автоматов, в которой в качестве

носителя N выступает некоторое множество графоидов G0, позволяет фор-
мализовать процедуру синтеза графоида общей модели объектов или систем,
автоматные модели которых описываются графоидами, содержащимися во
множестве G0 с использованием различных операций.
Обратимся к описанию и обоснованию корректности этих операций.

3. Операции алгебры графоидов автоматов

Определим операцию × над конечными непустыми попарно непересекаю-
щимися множествами M1 =

{
m1

1, . . . ,m
1
|M1|
}
, . . . ,Mn =

{
mn

1 , . . . ,m
n
|Mn|
}
:

M1 × . . .×Mn =
{{

m1
i1 , . . . ,m

n
in

}
|i1 = 1, |M1|, . . . , in = 1, |Mn|

}
.

В данном случае × не является декартовым произведением, так как ре-
зультат не зависит от порядка выполнения операции. Это позволит обеспе-
чить коммутативность операций над графоидами автоматов.
Пусть G1, G2 ∈ G0 – графоиды

G1 = (QG1 , FG1 ,XG1 , YG1);(1)
G2 = (QG2 , FG2 ,XG2 , YG2).(2)

Если графоиды (1) и (2) удовлетворяют условиям

YG1 ∩XG2 = ∅;(3)
YG2 ∩XG1 = ∅,(4)

то произведением × графоидов (1) и (2) называется графоид
Π = G1 ×G2 = (QΠ, FΠ,XΠ, YΠ),

где qΠ ∈ QΠ определяется как qΠ = {qG1 , qG2}, а QΠ, FΠ,XΠ, YΠ задаются
формулами:

QΠ = QG1 ×QG2 ;

FΠqΠ = FG1qG1 × FG2qG2 ;

XΠ = XG1 ×XG2 ;

YΠ = YG1 × YG2 .

Графоид Π соответствует параллельному функционированию автоматов,
описываемых графоидами G1 и G2, с синхронной сменой состояний.
Если графоиды (1) и (2) удовлетворяют условию

XG1 ∩XG2 = ∅,(5)
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то суммой + графоидов (1) и (2) называется графоид

Σ = G1 +G2 = (QΣ, FΣ,XΣ, YΣ),

где qΣ ∈ QΣ определяется как qΣ = {qG1 , qG2}, а QΣ, FΣ,XΣ, YΣ определяются
по формулам

QΣ = QG1 ×QG2 ;

FΣqΣ =
(
FG1qG1 × {qG2}

)
∪
(
{qG1} × FG2qG2

)
;

XΣ = XG1 ∪XG2 ;

YΣ = YG1 ∪ YG2 .

Графоид Σ соответствует параллельному функционированию автоматов,
описываемых графоидами G1 и G2, с асинхронной сменой состояний.
Условие (5) позволяет исключить возникновение неопределенности при пе-

реходе между состояниями после выполнения операции +, т.е. исключить
возможность появления недерминированного автомата.
Заметим, что из определения операций × и + для графоидов (1) и (2)

следует

QG1×G2 = QG1+G2 .(6)

Таким образом, описана алгебра A1 = 〈G1,S1〉 где S1 = {×,+}, обладаю-
щая следующими свойствами:

(G1 ×G2)×G3 = G1 × (G2 ×G3) ;

G1 ×G2 = G2 ×G1;

(G1 +G2) +G3 = G1 + (G2 +G3) ;

G1 +G2 = G2 +G1.

Тем самым алгебра A1 является коммутативной полугруппой по каждой
из операций сигнатуры S1.

4. Композиция графоидов

При моделировании реальных систем требуется учет особенностей пред-
метной области, которые приводят к появлению дополнительных требований
к осуществлению синтеза автоматных моделей, что, в свою очередь, накла-
дывает некоторые ограничения на операции над их графоидами. К наиболее
распространенным требованиям относятся следующие:
1) смена состояний одного объекта или системы может инициировать сме-

ну состояний другого объекта или системы;
2) объект или система, полученные в результате выполнения операций,

могут содержать недопустимые состояния.
В связи с этим возникает необходимость расширения сигнатуры S1 ал-

гебры A1 на основе введения операций, позволяющих учитывать описанные
особенности.
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Учет первой особенности осуществляется с помощью введения понятия
«состояние-триггер», которое предполагает, что переход одного автомата в
это состояние инициирует переход другого автомата в некоторое заданное
состояние в зависимости от его текущего состояния, т.е. не выполняется хо-
тя бы одно из условий (3) или (4). Рассмотрим процесс функционирования
автоматов, которые описываются графоидами (1) и (2), в этом случае.
Если вершина qiG1

соответствует состоянию-триггер автомата A1〈G1, ини-
циирующего смену состояний в автомате A2〈G2, то для удобства дальнейшего
описания будем обозначать данную вершину как TG2 qiG1

.
Пусть в автомате A1〈G1 есть состояние-триггер, соответствующее вер-

шине TG2 qiG1
, и в этом автомате данному состоянию соответствует выходной

символ ykG1
. Этот символ одновременно является входным символом авто-

мата A2〈G2 и инициирует в нем смену состояния следующим образом: ес-
ли A2〈G2 находился в некотором состоянии, соответствующем вершине qsG2

,
и множество его входных символов, при появлении которых осуществляется
смена состояния, включает ykG1

, то A2〈G2 переходит из состояния, соответ-
ствующего вершине qsG2

, в состояние по входному символу ykG1
.

Также возможно, что и автомат A2〈G2 инициирует смену состояний авто-
мата A1〈G1, т.е. в автомате A2〈G2 есть состояние-триггер, соответствующее
вершине TG1 qiG2

.
Таким образом, возникает необходимость описания графоида, отображаю-

щего совместное функционирование двух автоматов, хотя бы один из которых
содержит состояние-триггер, влияющее на функционирование другого.
Если для графоидов (1) и (2) не выполняется хотя бы одно из условий (3)

или (4), то композицией ◦ графоидов называется графоид

K = G1 ◦G2 = (QK , FK ,XK , YK),

если QK , FK ,XK , YK удовлетворяют следующим условиям:

QK = QG1 ×QG2 ;

FKqK =
⋃

t∈YG2
l∈YG1

F
t/l
G1

qG1 × F
l/t
G2

qG2 ;

XK = XG1 ×XG2 ;

YK = YG1 × YG2 ,

где F t/l
G1

qG1 – отображение перехода автомата из состояния, соответствующего
вершине qG1 графоида G1, при появлении его входного символа t ∈ XG1 ∩ YG2 ,
при котором на выходе появляется символ l ∈ YG1 ,

F
l/t
G2

qG2 – отображение перехода автомата из состояния, соответствующего
вершине qG2 графоида G2, при появлении его входного символа l ∈ XG2 ∩ YG1 ,
при котором на выходе появляется символ t ∈ YG2 .
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Рис. 1. Графоид подавтомат автомата A1,2〈K.

a б

Рис. 2. а – Графоид подавтомата A1, б – графоид подавтомата A2.

Заметим, что из определения операций ◦, × и + для графоидов (1) и (2)
следует

QG1◦G2 = QG1×G2 = QG1+G2 .(7)

Те ор ем а 1. Пусть графоиды (1), (2) соответствуют детерминирован-
ным автоматам A1, A2 и не удовлетворяют хотя бы одному из условий (3)
или (4). Тогда K = G1 ◦G2 является графоидом детерминированного авто-
мата.
Дока з а т е л ь с т в о. Если автомат A1,2〈K является недетерминирован-

ным, то без ограничения общности можно считать, что он содержит подав-
томат, графоид которого изображен на рис. 1, при этом y1G1

= x1G2
.

Тогда в автоматах A1 и A2 найдутся подавтоматы, графоиды которых
изображены на рис. 2.
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Следовательно, в этом случае автомат A2 является недетерминированным,
что противоречит условию теоремы.
Заметим, что вследствие ассоциативности и коммутативности операций ×,∪
операция композиции ◦ также обладает этими свойствами:

(G1 ◦G2) ◦G3 = G1 ◦ (G2 ◦G3);

G1 ◦G2 = G2 ◦G1.

Очевидно, что если выполняются условия (3) и (4), то G1 ◦G2 = G1 ×G2.
Определим новую алгебру A2 = 〈G2,S2〉 с сигнатурой S2 = {◦,×,+}, ко-

торая, как и алгебра A1, образует коммутативную полугруппу по каждой
операции.

5. Операция фильтрации графоида

После выполнения бинарных операций сигнатуры S2 появляется новый
графоид алгебры A2. Автомат, соответствующий данному графоиду, может
не удовлетворять ограничениям на совместное функционирование составляю-
щих общей модели потому, что полученный автомат может содержать недо-
пустимые комбинации их состояний с учетом особенностей предметной обла-
сти, т.е. в полученном автомате возникают конфликтные ситуации (предпола-
гается, что множество конфликтных ситуаций определяет лицо, принимаю-
щее решение). Вследствие этого возникает необходимость введения операции
фильтрации ∇, позволяющей исключать вершины графоида, которые соот-
ветствуют недопустимым состояниям автомата. Такие вершины также будем
называть недопустимыми.
Заметим, что в [12, 13] изучались только вопросы поиска и удаления недо-

стижимых состояний автоматов, что способствует снижению размерности за-
дачи, но может не удовлетворять требованиям предметной области.
Обозначим через Ω1, . . . ,Ωn образующие алгебры A2, т.е. графоиды, из ко-

торых с помощью операций сигнатуры S2 могут быть получены все остальные
графоиды носителя G2.
Определим множество Ψ = {Ψ1, . . . ,Ψk, . . . ,Ψr} недопустимых вершин

некоторого графоида. Каждая вершина Ψk соответствует множеству{
q
lk1
Ωk1

, . . . , q
l|Ψk|
Ωk|Ψk|

}
вершин, образующих алгебры A2.

Пусть графоид H = (QH , FH ,XH , YH) получен путем преобразований гра-
фоидов G1, . . . , Gm ∈ G2 с помощью операций сигнатуры S2. Тогда множество
всех вершин графоида H имеет следующий вид:

QH =
{
QG1 , . . . , QGm ,

{
QGij|QGij = QGi ×QGj ,∀i, j ∈ {1,m}, i �= j

}
, . . . ,

{
QGi1,...,in

|QGi1,...,in
= QGi1

× . . .×QGin
,∀i1, . . . , in ∈ {1,m}, i1 �= . . . �= in

}}
.
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Определим функцию

π(qH ,Ψk) =

{
1, если Ψk ⊆ qH ,

0, если иначе.

Тогда вершина qH ∈ QH недопустима, если
r∑

k=1

π(qH ,Ψk) �= 0.

Обозначим как

ΞH =

{
qH ∈ QH |

r∑
k=1

π(qH ,Ψk) �= 0

}
множество всех недопустимых вершин.
Для исключения недопустимых состояний введем унарную операцию

фильтрации ∇. Графоид ∇ΞH
H называется фильтрацией графоида H по

множеству ΞH , если он является подграфом графоида H с множеством вер-
шин Q∇ΞH

H = QH \ ΞH .
Таким образом, получена алгебра A3 = 〈G3,S3〉 с сигнатурой S3 =

= {∇, ◦,×,+}.

6. Алгоритм синтеза графоидов автоматной модели

Для разработки данного алгоритма первоначально определим алгебру гра-
фоидов, сигнатура которой содержит только те операции, которые необходи-
мы для решения задачи синтеза графоидов автоматных моделей с учетом
описанных выше особенностей.
Рассмотрим одновременно функционирующие автоматы, которые описы-

ваются графоидами (1) и (2). Смена их состояний может происходить как
одновременно, так и в различные моменты времени. Следовательно, функ-
ционирование автоматов может быть:
• либо синхронизировано, что в процессе синтеза описывается
— операцией ×, если они не содержат триггеры, влияющие на функцио-
нирование друг друга;

— операцией ◦, если они содержат триггеры, влияющие на функциониро-
вание друг друга;

• либо быть асинхронным, что описывается операцией +.
В процессе синтеза должны быть учтены обе возможности функциониро-

вания автоматов. Исходя из этого необходимо объединить операции ◦,× и +.
Для этого введем операцию объединения ∪ графоидов.
Пусть для графоидов (1) и (2) выполняется условие (5) и QG1 = QG2 , тогда

объединением ∪ графоидов называется графоид

C = G1 ∪G2 = (QC , FC ,XC , YC),
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где QC , FC ,XC , YC задаются следующими формулами:

QC = QG1 = QG2 ;

FCqC = FG1qG1 ∪ FG2qG2 ;

XC = XG1 ∪XG2 ;

YC = YG1 ∪ YG2 .

Данная операция обладает следующими свойствами:

(G1 ∪G2) ∪G3 = G1 ∪ (G2 ∪G3) ;

G1 ∪G2 = G2 ∪G1.

Учитывая свойства (6) и (7) введенных выше операций ◦,× и +, процесс
синтеза графоидов автоматных моделей может быть выполнен с помощью
следующих комбинаций этих операций:

G1 ⊗G2 = (G1 ×G2) ∪ (G1 +G2);

G1 �G2 = (G1 ◦G2) ∪ (G1 +G2).

Полученные после выполнения операций ⊗ и � синтезируемые графоиды
могут соответствовать автоматам, которые содержат недопустимые состоя-
ния. Для их исключения необходимо использовать операцию фильтрации ∇.
Сказанное выше позволяет сделать вывод, что для синтеза графоидов

автоматных моделей может быть использована алгебра A = 〈G,S〉, где S =
= {∇,⊗,�}.
Рассмотрим алгебраические свойства операций сигнатуры S.
Из коммутативности и ассоциативности операций ◦,×,+,∪ следует ком-

мутативность и ассоциативность операций ⊗ и �. Поэтому порядок осуществ-
ления синтеза общей модели с их использованием не важен.
Обозначим через • одну из операций множества {⊗,�}. Пусть гра-

фоиды Gi1 , Gi2 , Gi3 , . . . , Gis получены путем преобразований графоидов
G1, . . . , Gm ∈ G с помощью операций сигнатуры S. Тогда справедливо сле-
дующее утверждение.

Те ор ем а 2.

∇(Gi1 •Gi2 •Gi3 • . . . •Gis) = ∇
(
∇
(
. . .
(
∇
(
(∇Gi1) •Gi2

)
•Gi3

)
• . . .
)
•Gis

)
.

Дока з а т е л ь с т в о. Воспользуемся методом математической индукции.
Пусть ΞGit

– множество недопустимых вершинн графоида Git , а множе-
ство Ξ содержит все возможные недопустимые вершины комбинаций графои-
дов Gi1 , Gi2 , Gi3 , . . . , Gis .

1) Если s = 2, докажем, что ∇(Gi1 •Gi2) = ∇
(
(∇Gi1) •Gi2

)
.

Множество вершин ∇(Gi1•Gi2) имеет вид QGi1
•Gi2

= Q̂Gi1
•Gi2

\Ξ, а множе-
ство вершин ∇

(
(∇Gi1)•Gi2) имеет вид QGi1

•Gi2
=
(
(Q̂Gi1

\ΞGi1
)×Q̂Gi2

)
\Ξ.
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Рис. 3. Алгоритм синтеза графоидов автоматных моделей.

Преобразуем последнее выражение:

QGi1
•Gi2

=
((

Q̂Gi1
\ ΞGi1

)
× Q̂Gi2

)
\ Ξ =(8)

=
((

Q̂Gi1
× Q̂Gi2

)
\
(
ΞGi1

× Q̂Gi2

))
\ Ξ.

Во множестве ΞGi1
× Q̂Gi2

все вершины являются недопустимыми, следо-
вательно, ΞGi1

× Q̂Gi2
⊆ Ξ, и выражение (6) можно переписать в следую-

щем виде: (Q̂Gi1
× Q̂Gi2

) \ Ξ, что соответствует ∇(Gi1 •Gi2).
2) Предположим, что для s = k утверждение верно, докажем, что оно верно
для s = k + 1.
Имеем

∇(Gi1 •Gi2 •Gi3 • . . . •Gis •Gis+1) =

= ∇
(
∇
(
∇
(
. . .
(
∇
(
∇(Gi1) •Gi2

)
•Gi3

)
• . . .
)
•Gis

)
•Gis+1

)
,
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так как графоиды Gi1 , Gi2 , Gi3 , . . . , Gis получены путем преобразований с
помощью операций сигнатуры S, то выражение Gi1 • Gi2 • Gi3 • . . . • Gis

можно заменить на эквивалентный графоид H = Gi1 •Gi2 •Gi3 • . . . •Gis .
Тогда получаем, что выражение ∇(Gi1 • Gi2 • Gi3 • . . . • Gis • Gis+1) име-
ет вид ∇(H •Gis+1). Следовательно, необходимо показать cправедливость
равенства ∇(H •Gis+1) = ∇

(
(∇H) •Gis+1

)
, что было сделано в пункте 1).

Таким образом, алгоритм синтеза графоидов из G имеет вид, приведенный
на рис. 3. Его корректность вытекает из описанных выше алгебраических
свойств операций сигнатуры S и доказанной выше теоремы.

7. Численный пример

В качестве примера рассмотрим процесс контроля доступа в зону чрез-
вычайной ситуации, организации поиска пострадавших и эвакуации людей и
материальных ценностей из этой зоны [10], что предполагает использование
следующих штатных функциональных групп:
1) организации доступа в зону чрезвычайной ситуации, действия которой
моделируются автоматом A1〈

(
G1 = (QG1 , FG1 ,XG1 , YG1)

)
;

2) организации поиска людей и материальных ценностей, подлежа-
щих эвакуации, действия которой моделируются автоматом A2〈

(
G2 =

= (QG2 , FG2 ,XG2 , YG2)
)
;

3) организации эвакуации в безопасный район, действия которой модели-
руются автоматом A3〈

(
G3 = (QG3 , FG3 ,XG3 , YG3)

)
.

В процессе развития чрезвычайной ситуации перечисленные функцио-
нальные группы могут находиться в состояниях, которые соответствуют ука-
занным в таблице вершинам.

Описание вершин графоидов, соответствующих состояниям автоматов
A1〈G1, A2〈G2, A3〈G3, моделирующих действия функциональных групп
q1G1

Полный контроль периметра зоны чрезвычайной ситуации

q2G1
Осуществление пропускного режима

q1G2
Ожидание в исходном районе

q2G2
Выдвижение в район поиска

q3G2
Поиск подлежащих эвакуации людей и материальных ценностей

q4G2
Сопровождение подлежащих эвакуации людей и материальных
ценностей на сборный эвакуационный пункт

q1G3
Ожидание формирования колонны для эвакуации

q2G3
Учет пострадавших и формирование колонны для эвакуации

q3G3
Движение в безопасную зону

Графоиды G1, G2, G3 автоматов A1, A2, A3 приведены на рис. 4–6.
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Рис. 4. Графоид G1.

Рис. 5. Графоид G2.

Рис. 6. Графоид G3.

Необходимо синтезировать с использованием разработанной алгебры A
графоид H, определяющий совместную деятельность функциональных
групп. Анализ поставленной задачи позволил выявить:
– потенциальные конфликтные ситуации и определить множество недопу-

стимых вершин

Ξ =
{{

q1G1
, q2G2

}
,
{
q2G1

, q1G2

}
,
{
q2G1

, q3G2

}
,
{
q2G1

, q4G2

}
,{

q1G1
, q4G2

, q1G3

}
,
{
q1G1

, q4G2
, q3G3

}}
;

126



Рис. 7. Графоид H = ∇(G1 ⊗G2).

– необходимость инициирования действия автомата A3 автоматом A2: ес-
ли выходной символ автомата A2 есть y5G2

, то входной символ автомата A3

есть x2G3
.

Например, состояние, соответствующее вершине
{
q2G1

, q3G2

}
, является кон-

фликтным из-за того, что функциональная группа, описываемая автома-
том A1, осуществляет выдвижение в район поиска в тот момент, когда функ-
циональная группа, описываемая автоматом A2, осуществляет контроль тер-
ритории.
Опишем процесс синтеза графоида H в соответствии с приведенным на

рис. 1 алгоритмом.
На первой итерации осуществятся синтез графоидов H и G2:
принимается, что H = G1 и YH = YG1 ;
в связи с отсутствием состояний-триггеров, так как YH ∩XG2 = ∅, выпол-

няется действие H = H ⊗G2;
исключаются недопустимые состояния, определяемые вершинами

{q1G1
, q2G2

}, {q2G1
, q1G2

}, {q2G1
, q3G2

}, {q2G1
, q4G2

} графоида H, т.е. выполняет-
ся действие H = ∇H, данный графоид представлен на рис. 7, где вершины
qij = {qiG1

, qjG2
}, входные символы xij = {xiG1

, xjG2
} и выходные символы

yij = {yiG1
, yjG2

}.
На следующей итерации осуществляется синтез графоидов H и G3:
так как YH ∩XG3 �= ∅ выполняется действие H = H �G3;
исключаются недопустимые вершины {q1G1

, q4G2
, q1G3

}, {q1G1
, q4G2

, q3G3
} гра-

фоида H, т.е. выполняется действие H = ∇H, полученный графоид изоб-
ражен на рис. 8, вершины qijk = {qiG1

, qjG2
, qkG3

}.
Таким образом, графоид H соответствует автомату, который описывает

параллельное синхронное, асинхронное функционирование автоматов A1, A2,
а также инициализацию переходов состояний автомата A3.
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Рис. 8. Графоид = ∇(∇(G1 ⊗G2)�G3).

В полученном графоиде H учитываются все взаимосвязанные действия
трех штатных функциональных групп, деятельность которых направлена на
процесс контроля доступа в зону чрезвычайной ситуации, организации по-
иска пострадавших и эвакуации людей и материальных ценностей из этой
зоны.

128



8. Заключение

В статье построена алгебра графоидов автоматов, позволяющая синтези-
ровать графоид общей модели функционирования автоматов. При построе-
нии алгебры частично осуществлялся перенос операций над автоматами на
графоиды этих автоматов, а также вводились операции с учетом дополни-
тельных требований предметной области. Разработан алгоритм синтеза гра-
фоидов автоматов на основе этой алгебры, который позволяет построить
обобщенную модель функционирования объектов независимо от последова-
тельности их соединения в силу коммутативности операций.
Приведен численный пример синтеза графоида автомата, который описы-

вает взаимосвязанные действия трех функциональных групп, используемых
при возникновении чрезвычайной ситуации. Данные функциональные груп-
пы осуществляют контроль доступа в зону чрезвычайной ситуации, органи-
зацию поиска пострадавших и эвакуации людей и материальных ценностей
из этой зоны.
В результате получен математический аппарат, позволяющий моделиро-

вать совместные действия функциональных групп, участвующих в ликви-
дации чрезвычайной ситуации. Данный математический аппарат в дальней-
шем, за счет наполнения содержанием входных и выходных символов ав-
томатов, может быть использован в моделях оценки эффективности дей-
ствий функциональных групп и оптимизации выбора состава и тактики их
использования.
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