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LINEAR SYSTEMS

Incomplete Measurements-Based Finite Stabilization
of Neutral Systems by Controllers
with Lumped Commensurate Delays
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*Yanka Kupala State University of Grodno, Grodno, Belarus
e-mail: “hartovskij@grsu.by, Lurban_ola@mail.ru
Received July 16, 2024
Revised September 22, 2024
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Abstract—This paper considers a linear autonomous differential-difference system of neutral
type with lumped delays. For such systems, an output-feedback controller is proposed that
simultaneously solves the finite stabilization (complete damping) problem and ensures a finite
(albeit, nonarbitrary) spectrum of the closed loop system. For this controller, an existence
criterion is derived and a constructive design method is presented. The distinctive feature of
the controller is the absence of any distributed delay in the structure, which is important for
its practical implementation. The results are illustrated by a numerical example.

Keywords: differential-difference system, neutral type, delay, finite stabilization, controller
DOI: 10.31857/S0005117925010011

1. INTRODUCTION

Systems of differential equations with delay are used to model many processes in ecology,
medicine, electrodynamics, deformed solid mechanics, engineering, economics, and other fields [1-3].
On the one hand, considering delay in a model improves reliability in describing real phenomena
and predicting the behavior of the corresponding systems. On the other hand, incorporating pro-
cess characteristics at previous time instants into the evolution law of the system increases its
complexity. In this connection, quite a lot of research works have been devoted to the general
theory of delayed systems and their applications (for example, see the Introduction in [3]). This
paper addresses the issue of the finite stabilization of linear neutral systems with lumped delays in
the state and control variables.

Stabilization problems for delayed systems are rather difficult [4-11] and have not been fully
investigated to date. One possible approach is based on calculating the unstable eigenvalues of
the spectrum and then replacing them with suitable numbers. However, finding such values is a
nontrivial task. Therefore, a more universal method is to assign a finite spectrum to a closed loop
system [12-15], usually consisting of numbers with negative real parts.

Generally speaking, the set of eigenvalues of a linear system with aftereffect is infinite, so it
seems natural to control all eigenvalues of such a system by tuning the coeflicients of its character-
istic quasipolynomial (the problem of modal control [16-19]). Another line of stabilization-related
research consists [14, 20-22] in designing a feedback controller that ensures, after a finite time, zero
values for all components of the state vector of the the original open-loop system (the finite sta-
bilization problem [23, 24|, in other words, providing the complete 0-controllability by a feedback
controller). An original idea for solving the finite stabilization problem is to introduce a feedback
loop so that the closed loop system becomes a system with a finite spectrum pointwise degenerate
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2 KHARTOVSKII, URBAN

in the directions corresponding to the solution components of the original system. Such ideas were
further developed to systems of neutral type [15, 17, 21, 22]; a systematic presentation of these
results can be found in the monograph [25].

In this paper, a finite stabilization output-feedback controller is designed for linear autonomous
systems of neutral type with lumped commensurate delays. This is an output-feedback controller
based on measurements of an observed signal that ensures both finite stabilization and a finite
spectrum. In the case of a delayed system with scalar input and output, such a problem with
the choice of any finite spectrum was studied in [24] and, for multi-input neutral systems, in [26].
A disadvantage of the approach described in [26] is the presence of distributed delay terms in
the controller, although the original plant has only a lumped delay. During practical implemen-
tation, the integrals containing a distributed delay are replaced by finite sums, which may lead
to undesirable consequences even when using high-precision quadrature formulas (e.g., the loss of
stability) [27, 28]. The fundamental difference between this paper and [26] is the new structure of
the controller, which contains purely lumped commensurate delays. The idea is to construct a dis-
continuous feedback defined by two controller loops (inner and outer). The inner loop “smoothens”
the solution over time by using a feedback law that transforms the original system into a delayed
one. After the solution reaches the necessary smoothness, the second loop is activated to ensure
the pointwise degeneracy of the closed loop system in the directions corresponding to all solution
components of the original (open-loop) system.

2. PROBLEM STATEMENT

Let the plant under consideration be described by a linear autonomous differential-difference
system of neutral type with lumped commensurate delays:

Q(t) — ip@(t —ih) = i (Asz(t = i) + Biu(t — ih)), t>0,
=1 =0

y(t) => Ciz(t—ih), t=0,
=0

where x is the state vector of this system, u is the control input, y is the observed output, and
h = const > 0; D; € R™" A; € R™", B; € R™" and C; € R*™,

We introduce the following notations: I; € R*? is an identity matrix, and )y, is the shift operator
defined by the rule (\,)* f(t) = f(t — kh), k € N, for a given value h > 0 and an arbitrary function f.
With the polynomial matrices

D) =) DN, AN => AN, CA)=> CX, B(A)=> B\,
=1 =0 =0 1=0

the original plant can be written in the operator form

(I — DOW)i(t) = AN (t) + BOwu(t), ¢ >0, 1)
y(t) = COwa(t)

=
~
~
WV
o
—
[N}
~—

The solution of equation (1) is uniquely determined by the initial condition
xz(t) = p(t), u(t)=0, te[—mh,0]. (3)

Suppose that ¢ € C? ([=mh, 0], R™) is an unknown function, where Ck(-) indicates the class of k — 1
times continuously differentiable functions with a piecewise continuous derivative of order k. The
control input u is a piecewise continuous function.

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025



INCOMPLETE MEASUREMENTS-BASED FINITE STABILIZATION 3

Let R™™[p, A] (R™*™[A]) be the set of all matrices of dimensions n xm whose elements represent
polynomials of the variables p, A (A\) (if m = n = 1, the superscript will be omitted), where p,, =
d/dt is the differentiation operator.

We define an output-feedback controller of the form

u(t) = U]-]-(pD7 )‘h)y(t) + U12(pD7 )‘h)j(t)7
Z(t) = Ua1(pp, An)y(t) + Una(ppy, An)E(E),  t > to.

Here, ¥ € R? is an auxiliary variable, o > 0 is some number chosen below (u(t) =0, t < to),
Ui(p,A) € R™![p,A], Ura(p,A) € R™"[p,N], Uai(p,\) € R"![p,A], and Unn(p, ) € R™
For implementing the controller (4), we specify the initial condition

(t) = (1), t€lto—hto) (h=ah, &=max{deg,Us(p,\), k=1,2}), (5)

where ¢ € 5’7([150 — ﬁ,to],]Rﬁ) is any function, p = max{deg, Ur2(p, \),k = 1,2}, and the notation
degy f(A) means the degree of a polynomial (including a matrix one).

The goal of this paper is to design the controller (4) ensuring the following conditions:

(a) Regardless of the initial functions ¢ in (3) and ¢ in (5), there exists a number ¢; > 0 such
that the vector component x of the solution vector col[x,Z| of the closed loop system (1), (4) is
zero starting from a time instant ¢y, i.e.,

z(t) =0, t>t. (6)

(b) The closed loop system (1), (4) is a linear autonomous system of neutral type with a finite
spectrum.

Remark 1. (a) By a linear autonomous homogeneous neutral system with commensurate delays
we mean a linear autonomous system Y (p,, Ap)z(t) = 0, T(p, \) € R™*"[p, \] with a characteristic
quasipolynomial of the form | Y (p, \)| = 34 p'di(\), where v = n deg, T(p, ), d;(\) are polynomi-
als, d,,(0) = 1, and the symbol | - | stands for the determinant of a matrix. By introducing auxiliary
variables, such a system can be rewritten as (1). Linear autonomous differential-difference systems

with delay (d,(A) = 1) and ordinary systems are treated as a special case of neutral systems.
(b) Since Ujj(p,A) are polynomial matrices, system (1), (4) has only lumped commensurate
delays.

Definition 1. A controller (4) implementing conditions (a) and (b) will be called a finite stabi-
lization output-feedback controller.

Let us denote W(p,\) = p(I, — D(\)) — A(N).

Lemma 1. Assume that for system (1), (2), there exists a finite stabilization output-feedback
controller (4). Then

rank [W(p,e "), B(e™?")] =n VpeC, (7)

rank [I,, — D(A),B(\)] =n VX €eC, (8)
W (p,e ")

rank [ e ] =n VpeC, (9)

[PV e 10

ran l N 1—71 SH O (10)

The proof is postponed to the Appendix.

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025



4 KHARTOVSKII, URBAN

3. THE MAIN RESULT

Now we formulate the main result of this paper.

Theorem 1. For system (1), (2) there ezists a finite stabilization output-feedback controller (4)
iff conditions (7)—(10) are valid.

Proof. Necessity follows from Lemma 1. Sufficiency. The sufficient nature of the conditions of
Theorem 1 will be established in two parts. In the first part, we design a controller implementable
under the condition that the output y(¢) is a (pg — 1) times continuously differentiable function with
a piecewise continuous derivative of order pg, where the number pg is determined when constructing
the controller (see Remark 2). To satisfy the above condition for the function y(¢), we suppose
that ¢ € CPo. The second part of the proof considers the general case p € C! and po > 1, i.e., the
smoothness of the initial function does not ensure the same property for the output y(¢), which is
described above.

3.1. The Case ¢ € CP0

To prove the sufficiency of the theorem’s conditions, we design the controller (4). The design
process will consist of the following steps: 1) constructing a finite stabilization state-feedback
controller; 2) constructing a finite observer; 3) designing a finite stabilization output-feedback
controller based on the parameters of the controller and observer constructed at the previous steps.

1. Constructing a finite stabilization state-feedback controller

Due to (7) and (8), for system (1), there exists [22; 25, p. 358] a controller (further called a
finite stabilization state-feedback controller) of the form

u(t) = LOO(pD7 )‘h)x(t) + Loy (pD7 )‘h)j(t%

. (11)
j(t) = LlO(ppv )‘h)x(t) + Lll(ppa )\h)j(t)v t>0,

where T € R™ is an auxiliary variable, Loo(p,\) € R"™"[p, ], Lo1(p,\) € R"™*"[p, \], Lio(p,\) €
R™™[p, \], L11(p, \) € R™"[p, A], and deg,L;;(p, \) = 1, with the following conditions:

(1) Tt is possible to find a number ¢; > 0 such that, regardless of the initial condition of sys-
tem (1), (11), we have

z(t)=0, t=>t. (12)

(2) System (1), (11) is a linear autonomous neutral system with lumped commensurate delays
and a finite (albeit, not a priori given) spectrum. Since the spectrum of the closed loop system is
finite, the determinant of the characteristic matrix of this system will be a polynomial, i.e.,

[Wo(p, M| = do(p)- (13)

Here, do(p) is some polynomial and Wy(p,e P") is the characteristic matrix of system (1), (11)
given by

Wo(p.A) = W(p,A) = B(AN)Loo(p, A) —B(A)Loi(p, A) (14)
oA ~Lig(p, N) pli— Lu(p.\) |

We present the idea of constructing the controller (11) [22; 25, p. 358]. Conditions (7) and (8)
are necessary and sufficient for the existence of matrices L;j(p, A) in (11) such that the system
corresponding to the matrix (14) is pointwise degenerate in the directions ¢€;, i =1,n+n — 1,

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025



INCOMPLETE MEASUREMENTS-BASED FINITE STABILIZATION 5

where €; is the ith column of the matrix I,,+5. This implies [29] the existence of a time instant ¢;
such that &col[z(t),Z(t)] =0,t > t1,i = 1,n + 7 — 1. (The prime’ indicates transpose.) The latter
identity ensures (12). The construction procedure for the matrices L;;(p, A) from (11) was described
in [22; 25, p. 358].

2. Constructing a finite observer

By a finite observer we mean [30, 31] a linear autonomous delayed differential system dependent
on the output (3) with lumped commensurate delays, a finite spectrum, and the output v that has
the following property: there exists a time instant ¢, > 0 starting from which, regardless of the
initial conditions of the observer and equation (1), the observer’s output v is equal to the solution
x of equation (1) generating the output y, i.e., z(t) = v(t), t > t..

As was shown in [30, 31], conditions (9) and (10) are necessary and sufficient for the existence
of a finite observer. In this case, the observer can be constructed both as a system with distributed
delays and any given finite spectrum [30] and as a system without distributed delays with a finite
(albeit, not a priori given) spectrum [31]. For the goal of this paper, we will modify one observer
from [31].

By condition (10), there are matrices L1(A\) € R™¥![)\] and La()\) € R™*![)] such that [17, 22]

et~ D =1, Duy = | ) 2 (15
n—+l L =4 L - C()\) )\LQ(A) .

Let IT(\) = [II;; (/\)]7?].:1 be the adjoint matrix for the matrix (I,4; — Dr (X)), where II1;(\) €

R™"[\], Tli2(A) € RN, Mg (N) € RX?[A], and Tlap(A) € RN, From (15) it follows that

II(A) = (g — DL(/\))_l. We introduce the new function
x(t) = (In — D(An))2(t), t=0. (16)
Let Y(t) (Y € R, t € R) be an arbitrary function. Applying the operator II(\;) to the equality

Ly = D(A\n)  —AnLi(An) 1 [x(t) 1 x(t) 1 N [ =AnL1(An)X(t) 1 LS 0
( ) = 9

—C(An) I = AnLa(An) | [ X(2) —y(t) I — A La(An))X(t)
on the left allows establishing the relation
z(t) = (Ap)x(t) — Mia(An)y(t), &= 2h, (17)

where v, = max{vy;, j = 1,2} and v;; = deg,II;;(\). Next, let us denote

C (M1 (A) ]

AN = AN (), CO\) = [ (I, — DX\) I (N) — T,

I + C(M)12(N)

y(t) = Cy(An)y(t), t=7sh, Cy(A) = (I, — D(\)12(N)

‘|7 ’YS:m+’Y2~

Based on (16) and (17), system (1), (2) can be written as an inhomogeneous linear autonomous
differential-difference system with commensurate delays and the known output ¢:

X(t) = AQw)x(8) + BOw)u(t) — A2 (A)y(t), ¢ > y3h, (18)

y(t) = CAn)x(t), t=1sh. (19)

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025



6 KHARTOVSKII, URBAN

In view of (9), system (18), (19) satisfies the condition [30, 31]

In—ﬁe_ph
rank b _ ( )}:n Vp e C. (20)

C(ePh)

From (20) it follows that, for any 39 € {1,...,n + I}, there exists a matrix V;,(\) € R**(**+D[)\] such
that

[ pI — A(e7™) — Vi, (e P)C(e ")
rank

S ] =n VpeC, (21)

where &, (\) is the igth row of the matrix C(\) [12]. Letting
Av(N) = AQ) +VigWCR), Ko(A) = =AM (M) = Vig(A)Cy (V) (22)

and using equations (18), (19) and formulas (22), we replace system (1), (2) with

X(t) = Av(Ap)x(t) + B(An)u(t) + Ko(Ap)y(t), t> 11,

. (23)
gio (t) = Eio (/\h)X(t)7 t =t

where §;,(t) is the igth component of the vector §, 1 = (v + 73)h, and vy = deg) Vi, ()).
Due to condition (21), for system (23), there exists [31] a finite observer in the form of a finite-
spectrum system with purely lumped commensurate delays:

£(t) = Q(pp, Mn)z(t) + K(Mn)y(t) + B(An)u(t), t >t (24)

in addition, the output v, determining the estimate of the solution y of system (23) is given by

02 (t) = [In,Onxs]2(t), t>1. (25)
Here, z =col[z1,22], 21 € R", 29 € R3, 2 = col[z11, ..., 2z1n], 22 = col[za1, 222, 223], Q(p,A) €
ROH3)X(E3) [ 2] 0,50 denotes a zero matrix of dimensions n x m,
_ B(\)
B(\) = ; (26)
03XT

and the matrix K (A) is found from the equality

KOw(t) = [KOW)] §(E) — ensifin(t) — ([KW’”] - ézocyuh)) s, @

03><l O3><l

where e; and é; are the ith columns of the matrices I, 43 and I,,1, respectively. The matrix Q(p, \)
is obtained by the scheme for constructing the finite observer matrix for a homogeneous delayed
system with scalar output [31]. The elements of the matrix Q(p, A) are such that, after introducing
auxiliary variables, the homogeneous system (24) can be written in the standard form of a linear
autonomous delayed system (i.e., as X (t) = X(\,) X (t), where ¥(\) is a polynomial matrix), and

|pIn+3 - Q(pa )‘)’ = dl (p)> (28)

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025



INCOMPLETE MEASUREMENTS-BASED FINITE STABILIZATION 7

where dy () is a polynomial. The matrix Q(p, A) has the form

[ af;(A) ...oaf, () g11(N) J12 0 T
a’r‘;l ()‘) s d%n()‘) Inl ()\) §n2 0
Qp,\) = | B : (29)
c}o (A ... i (A) | gnt11(p, A) 1 0
0 ... 0 [Agni21(0:A) gny22(0,A) gnr23(N)
L 0 ... 0 Agnt31(A)  gngs2(A)  gngzz(A) |

where G;;(A) are the elements of the matrix Ay(\), Ay(\) = [al, (V)] & (\) are the elements of

7 ?
the vector ¢, (X), G, (A) = [, (A), ..., (V)], gij(p, ) and gij(Z\) argxgolyr(;omials of the variables
p, A and A, respectively, and ;o € R.

Remark 2. Let pg = max{deg,gni21(p,\) — deg,(gns11(p; A) —p),1}. The component zo; de-
pends on the output y; therefore, 29, € 5p0([fl,+oo),R) is a necessary condition for the term
Angn+21(Pp, An)z21 to exist in system (24). Hence, we require §;, € 5p0([fl,+oo),R), which is
achieved by ¢ € CP°([—mh, 0], R").

The components of the initial function z(t), t € [t; — ho, 1] (ho specifies the delay of system (24)),
are taken smooth enough with a piecewise continuous senior derivative. (For each component, the
order of this derivative is determined by the maximum degree of the variable p of the corresponding
polynomials in the matrix (29).) In particular, it is possible to set z(t) = 0, t € [to — ho, to].

Now we explain the idea of choosing the elements of the matrix Q(p,A). Let ( =v, — x = 21— X
denote the estimation error and ¢ = col [(, z2]. In view of (29) and (25), the vector function ((t) is
given by the linear autonomous delayed system

() = Qop, M)C(H), > . (30)

The elements of the matrix Q(p, \) are chosen so that system (30) is pointwise degenerate in the
directions corresponding to the first (n + 2) columns of the matrix I,, 13, i.e., in the directions e;,
i = 1,n + 2. Hence, there exists a time instant 5 such that egg:(t) =0,t>1,i=1,n + 2, regardless
of the initial function defining the solution of system (30). Consequently, the equality

X(t) =wv.(t), t=to, (31)

holds for any initial functions of systems (1) and (24).
Finally, we estimate the solution of system (1), (2) using formula (17). With

o(t) = 11 (M) [In, Onxs] 2(t) — T2 (Mn)y(t),  t >, (32)
from equality (31) and formula (17) it follows that
z(t) =v(t), t=>ts, (33)

where t3 = t3 + v11h. Thus, the finite observer (24), (32) has been constructed.

3. Designing a finite stabilization output-feedback controller

Let us derive expressions for the controller (4). To this end, the control inputs u(t) in equa-
tions (24) are replaced using the first formula of (11); the variable x in the resulting equation and

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025



8 KHARTOVSKII, URBAN

the relations (11) is expressed through z, y using (33) and (32). Next, denoting the variables z, z
by x1, x2, respectively, we write the controller

u(t) = Roi(pp, An)z1(t) + Ro2(pp, An)w2(t) + Roo(pp, An)y (1), (34)
E1(t) = Ri1(pp, An)z1(t) + Ri2(pp, An)z2(t) + Rio(pp, An)y(t), (35)

i5(t) = Raa(pp, An)2a(t) + B(w) (Rot(pp ) (1) .
+ Rog(pD, /\h)xg(t) + Roo(pD, /\h)y(t)) + K(/\h)y(t), t > 1o,

where z; e R™, i=1,2 (ny=n, ng=n+3), are auxiliary variables, ty= agh, ap=
max { deg)\ ROO (pv )‘) + m, deg)\ RIO (pv )‘)7 deg)\ K()\)}v and

Rio(p, A) = —Lio(p, N1Li2(X),  Rii(p, A) = Lii(p, A),
Rio(p, \) = Lio(p, NIL11(A) [In, Onxs], i =0,1, Raa(p,A) = Q(p, N).
Letting & = col{z1, 2], U11(p, A) = Roo(p, A), Ui2(p, A) = col[Ro1(p, A), Ro2(p, A)], and

RlO (pv )‘) ‘|
(M Roo(p, A) + K(\) |

(37)

Ua1(p, A) = [F

Ri1(p, M) Ria(p, M) ]

Usz(p,A) = lF(/\)Rm (p,\) Roa(p, \) + B(A\)Roz2(p, \)

allows representing the controller (34)—(36) in the form (4).
Let é; be the columns of the identity matrix I, 4y, 4n,-
Proposition 1. System (1), (2), (34)—(36) is pointwise degenerate in the directions é;, i =

IL,n+n—1,1=n+n+1,n+n1+ne—1, and the set of its spectral values and their multi-
plicity are determined by the roots of the polynomial dy(N)dy(N).

The proof is provided in the Appendix.

By Proposition 1, the constructed controller (34)—(36) is a finite stabilization output-feedback
controller. In the case ¢ € C”°, Theorem 1 is proved.

3.2. The Case ¢ € !

If po = 1 (see Remark 2), then the controller (34)-(36) is the desired finite stabilization controller
and the considerations of Section 3.2 become unnecessary. In what follows, we assume that py > 1.

The finite stabilization output-feedback controller will be constructed as a variable structure
(discontinuous feedback) controller [33] consisting of two serially connected loops: inner @ and
outer v:

0, t < ts
ut) = { at), t € (ts, tg) (38)
a) +ot), >t

The inner loop u ensures “smoothing” of the solution of the corresponding closed-loop system (1)
over time. Once the solution of the system is py — 1 times continuously differentiable and has a
piecewise continuous derivative of order pg, the outer loop v (34)-(36) is activated to ensure the
pointwise degeneracy of the closed loop system.
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Remark 3. In general, the loops @ and v may contain auxiliary variables as their arguments.
Therefore, the full description of the finite stabilization output-feedback controller will be the
relation (38) supplemented by differential equations with initial conditions describing the behavior
of the auxiliary variables similar to the relations (4) and (5).

Let us impose a condition on the parameters of the homogeneous (u = 0) system (1) under which
the smoothness of its solution will increase over time. We denote by IIp(\) the adjoint matrix for
the matrix (I, — D()\)), mo = degy AN p(N).

Lemma 2. Assume that the homogeneous (u = 0) system (1) satisfies the condition
I, — D(V)| =1 (39)
and p € C~1 in the initial condition (3). Then, for any p1 € N and the solution x of system (1), we
have x € CP* ([ts + p1moh, +00), R™), where t4 = hdegy IIp(N).
The proof is given in the Appendix.

Remark 4. The identity (39) is equivalent to the fact that thf} characteristic quasipolynomial of
system (1) has the form [W(p,\)| = p™ + 37 p’d;()\), where d;(\) are polynomials.

Remark 5. By the proof of Lemma 2 (see the Appendix), under (39), the homogeneous system
of neutral type is reduced, through a nondegenerate change of the variables, to a delayed system
whose solution will smoothen over time. Let us present other considerations showing that if (39)
holds for the homogeneous system of neutral type, the smoothness of the solution will increase
with ¢. For clarity, let Dy # 0 and D; =0, i = 2,m, i.e., system (1) has the form

z(t) — D1az(t — h) = A(A\p)x(t), t>0.
Then we obtain the following chain of equalities:
() = A(An)z(t) + Dii(t — h)

= A(Ap)x(t) + D1 (A(Ap)z(t — h) + Dy&(t — 2h)) (40)

Z x(t —ih) + D™i(t —mh), t>mh, m€N.
=0

In this case (D1 # 0 and D; =0, i = 2,m), condition (39) becomes |I,, — AD;| = 1. This means
that the matrix D; is nilpotent. Let /g be the nilpotency index of the matrix Dy, D" = 0. Then
from (40) we obtain

mo—1

Z DiA(R)x(t —ih), t > 1mgh. (41)

System (41) is a delayed system with m(mo — 1) commensurate delays. Therefore, for ¢ > kmgh,
k=1,2,..., the smoothness of the solution increases by k units.

Similar reasoning is valid for an arbitrary polynomial matrix D()). (Condition (39) as necessary
and sufficient for the nilpotency of some matrix at the derivatives of the solution containing delays
was discussed in [25, p. 218]; see Lemma 4.10.)

Lemma 3. Under conditions (8) and (10), there ewist matrices Un(A) € RN, Uia(N) €
R D[N Ugy (A) € ROFTHXRN] - and Upa(A) € RUFHDX0+nHDIN] sych that

| Tongr1 — DOV)| = 1,
= D(A) + BAT1(NC(N) BWT1(N)| (42)
D)) = . ~ , D(0) = 094 ) -
( ) UQl()\)C()\) UQQ()\) ( ) (2n+4r+1)x (2n+r+1)
The proof is postponed to the Appendix.
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We define the inner loop controller by the relations

U(t) = pp Ut (M)y () + pp Uiz (An)z3(t) + v1(2),

R R (43)
.’Eg(t) = pDU21 ()\h)y(t) +prp Ugg(/\h)xg(t) + Ug(t), t > s,

where x3 € ]R”Jr”;l is an auxiliary variable, v = col[v1, vo], the matrices Ui;(\) ensure (42), t5 =
hmax {m + degy U1(A), degy U1 (\)}. We write system (1), (43):

- D x(t) _ A()‘h) Onx(n r+1) x(t)
(IQn—H‘-I-l D(/\)) |ﬂ,‘3(7§{| B [O(n—i-r-I—l)Xn 0(n+r+l)>-<i—(n—:—r+l)‘| Lc?,(t)]

+ B()\h) Onx(n—i—r—i—l)
O(n—i—'r—i—l)xr Lnirti

(44)
] o(t), t>ts.

Due to the condition 5(0) = 0(2n+r+10)x (2n+r+1)> System (44) has neutral type; in view of (42), it
also satisfies the condition of Lemma 2.

Let us specify the initial condition x3(t) = ¢3(t), t € [ts5 — h3, t5), where @3 € C'([ts — h3, t5),
R™+7+1) is any function and hg = hmax {deg)\ Wiz(\), degy, W23()\)}.

For system (44) we add the output signal

yi(t) = [0 C(An) Ol><(n+r+l)] lx(t)‘| ’ (45)

(ntr+l)xn Lnirsi €3 (t)

where y;(t) = col[y(t), x3(t)]. Clearly, system (44), (45) satisfies the conditions of Theorem 1.

Let v(t) =0, t < tg, in system (44). For ¢ > tg, we construct the loop v according to the scheme
of Section 3.1 but for system (44), (45). The number tg is appropriately chosen to fulfill the
smoothness requirement described in Remark 2.

Remark 6. In several cases, there may exist a polynomial matrix U()\) such that |I, — D(\) —

AB(A)U(N)C(A)| = 1. Then, to reduce the size of the matrices of the finite stabilization output-

feedback controller, we should take the inner loop controller in the form @(t) = p, U(An)y(t) + v(t)
instead of (43). In this case, the output (45) is replaced by the output (3), whereas the variable z3

and the corresponding blocks in (44) disappear (see the example below).

Ezample 1. We demonstrate the method of constructing a finite stabilization controller of the
form (4) (see the proof of Theorem 1) on an example of system (1), (2) with h =1n2 and the
matrices

DA =17y 0 0 1

A A2 017/1()\):[1—)\ 1]732[1170(/\):[1+/\, O]. (46)

In this case, the conditions of Theorem 1 are valid. In accordance with Remark 6, we find
a(t) =p, [An]yt) +v(t), t>ts =2h. (47)

(Here, [A] is a matrix of dimensions 1 x 1.)
For the case (46), (47), system (44), (45) takes the form

e[ g
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Interpreting it as system (1), (2), we follow steps 1)-3) of Section 3.1.
1. The controller (11) is constructed as described in [22]:

2 8 2 4
v(t) = [_§A2+A,%+ gAh—z, —g/\%Jr)\h— g} z(t)
7
+[)\§;—§/\ + /\h—l]x (49)
o 42 10 8 4 10 2 5 7]_
x(t)—[ 9)\ )\h+3, 9)\h+ 9] ()+[3)\h 3)\h+3 z(t).

Consider system (48) closed with the controller (49). The characteristic matrix Wy (p, A) (see (14))
has the form

r 2 5 2 1 7 7
1420220 22 ags gyl L]
pH1+43 3 3 +3 +3 5A+
2 8 2 4 7 7
Wo(p, A) = ) N C R - = )3 2 _A+1]. 50
o(p, ) p)\—|-3)\ A 3>\+ p+3)\ A+3 p +2>\ 2/\+ (50)
4 10, 8 410 7
S B il s “\— — ——/\2 3N — =
L9 9 3 9 9 TR 3 |

Direct verification shows that do(p) = p* — p. To investigate pointwise degeneracy we can apply,
g., [29, Theorem 1.1]. Let us briefly illustrate this process. The elements of the first two rows of
the matrix adjoint to the matrix Wo(p,e ") in (50) vanish on the roots of the polynomial do(p);
therefore, the elements of the first two rows of the matrix (Wo(p, e ?")) ~are integer functions. This
property implies [29] pointwise degeneracy in the directions [1,0,0] and [0, 1, 0], i.e., condition (12)
holds. The maximum degree of the variable A in these rows does not exceed 5, so t; = 5h.
2. We construct the finite observer (24), (32). In the case under consideration,

A
A0 =2 A A
241 _Z
2 2+ 0 5
Dp(\) = 0 0 0|, I\ = 0 1 0 )
14X 0 —% 1+X 0 1-2X
A2 3 A2
— 4+ =A+1 —— 1
~ 5 oA+l 0 Sty t
C(\) = _)\_2_5 O,Cy()\): )\_2_5 )
2 2 2 2
0 0 0

System (23) takes the form

2
() = [(1) (1)] X0+ || ), () = [—%—%, ]x(t)- (1)

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025



12 KHARTOVSKII, URBAN

Using (51), we finally arrive at the relations (24), (32):

0
0 1
1
) = Qoo a2 () + | 2 L A Ly + | 0| a),

2 "2 0
0

/\h )\h
wty=| 2 T O e+ ?}y@.

0 1 0

Here are the elements of the matrix Q(p,\) located in blocks nos. (1,2) and (2,2):

g11(A) =0, g2a1(A) =0, g31(p,A) = —1,
428 259 827 248 13308418 3263970139 - 64061 677864590419 -,

90PN = —rossms T 3rors Pt ai0130 P 683 506 252 800
| 4504350207517 10314197 1, 100094554247 916287 g
370825875 36325 800 683 506 252 800
| 173281041210530591 5 5199361041200900 o , 47137018631 639513 o
854382816 000 379725 696 000 1139 177 088 000
1145930623 773438 1y 3631 5 21985862341 5 AG0GS0G68593
341753 126 400 605 430 3645600 43747200
154784798249 , 255035489398 , 3925747081 . 90876950917
T T 312a160 PN T T domasis 710888 PN T 15256836000
1150012171 . 1743623839315721 , 30878 , 222361 ,
T T2187360 P T T 14239713600 T3 P om0 P
433453 819967 718133 3824219437 3631
~Toos PN T Toes P T 1m0 P 1serion P 60 ?
160864251357 763079 ;101487 682282697 11y _ 3412403y 3631 o
854382816 000 170876 563 200 585 900 19530
247456747 448040783667 1
32810400 7 61027344000 =
7991397801907001 . 430769061660938381 , 90522930353 255419
951N = ~ 3018768505000 T 51500297520000 ' 794576018880 000
7882042993003211 ,,  38819644979750780339
397 288 009 440 000 11124 064 264 320 000
5204886380912311157 5 16491580988 451 048 767 -
11124064264320000 11124064 264320 000
| 2550527 148568185769 5 6368698078279 )
309001 785 120 000 98377 714 960 000
440280 519864500737 1, T699195015471454567 5 3631y,
77250446 280 000 1236 007 140 480 000 18763 330
| 384150 ;30684351847 , 23072498 102986
41707 400 157653 972 000 44705119375
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g12 =0, ga2 =2,
22963886 6049 5 237550583 113747 1277029067 _,

942(PN) = —To5s “ 7085 TP T 1367100 1200 PN T 607600
1419991 ., 1644438853 , 817177 ., 92476221137 , 2164661 _,
5500 PN T 231360 ~ 1008 PV T 8202600 T T s0m0 P
14100715427003 . 6890671 . 131464618651 3631
T 1ss6163200 w120 PN T Torsmeoo T o6s0
3920013073 . 1930062779 2473263067 ., 105765593 ,, 3631
1749888 3645 600 32810400 18162900 ©  19530"

36874722147 2362315264557 20884081 349 269 |,

95:(N) = = 5700156500 20436626000 T 61309878000
_ 538059413076769 |, 1793665758 154211
1103577 804 000 4414311216 000
1445125981 988557 5 1026288639816701
6621466824000 13242933648 000
_ 8405817164119 \; 1174407170347 (s 106666081
472961 916 000 472961 916 000 563 049 900
3631 10
605430
%g»::—§55+§§44—1§§A¢+§EA?—&A+A6+&
4 8 8 4
g53(\) = —3%»”) + %X‘ — %A?’ + %AQ — %A %

(The form of the other elements is obvious.)

In this case, di(p) = (p—2)(p— L)p(p+ 1)(p + 2)(p + 3) (see (28)). By [29, Theorem 1.1], the
first 4 components of system (30) are degenerate.

3. Now we write the matrices of the finite stabilization controller (34)—(36) for system (48):

1 1 4 7 7
ROQ(]),A): [_§A4+§)\3+§A2_Ai|a ROl(paA): |:)\3—§A2+§)\—1:|,
7

1 1
ROQ(pa )‘) = [_ g)\4 — 6)\3 + g

2., 5., 4 9 .
RIO(pa )‘) = [_ 5)\3 + §)\2 + g)\}a Rll(pa )\) = [5)\2 — 3+ g},

) 2 4

2 2

a2 2 _ =

A —1—3)\ , 3)\ + A 3,0,0,0},

2 1 22 8§ 4 10
Ria(p,A) = [ = 5N+ N + A+ 5.5 A+ -,0,0,0],

1 1
R22(p7 )‘) = Q(p) A)) K()‘) = col [0707 5)\2 - 5)‘)07 0} .

We compose the characteristic matrix Wi(p, A) of the closed loop system (48), (34)—(36) (see the
proof of Proposition 1). Direct verification shows that [Wi(p,A)| = di(p)do(p). By [29, Theo-
rem 1.1], components nos. 1, 2, 4-7 of system (48), (34)—(36) become degenerate in time 16h.
(Here, 16 is the maximum degree of the variable A of the polynomials representing the elements of
the matrices of the controller (4).) Step 3) is completed. In this case, pg = 2; letting p; = 2 and
ty = 4h in Lemma 2, we observe that it is possible to take tg = t5 + t4 + 4h = 10h since mgy = 2
(see Lemma 2). Finally, the finite stabilization output-feedback controller is given by formula (38),
and t; = tg + 16h = 26h can be set in the identity (6).
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4. CONCLUSIONS

In this paper, we have derived an existence criterion for a finite stabilization output-feedback
controller as well as have proposed its design method. Conditions (7) and (8) represent [25, p. 206;
32] a complete O-controllability criterion for system (1), (2) (a complete damping/calming criterion
for this system). Conditions (9) and (10) are [25, p. 204; 32] represent a final observability criterion
for system (1), (2) (i.e., the existence of a single-valued continuous operator for reconstructing
the state of system (1) by the past output (2)). Thus, a finite stabilization output-feedback con-
troller exists iff system (1), (2) is both completely 0-controllable and finally observable. The design
procedure of a finite stabilization output-feedback controller is based on the methods for construct-
ing controllers and observers [22, 25, 31|, which involve algebraic operations implemented in most
modern computer mathematics systems. Therefore, it is possible to automate the computational
procedures proposed above when developing automatic control systems.
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APPENDIX

Proof of Lemma 1. If for any initial function ¢ in (3) there exists a control input u (a pro-
grammed or feedback law) ensuring (6), then system (1) is completely 0-controllable. Hence [32],
conditions (7) and (8) are necessary. Let us establish the necessity of condition (9). Supposing the
existence of a finite stabilization output-feedback controller of the form (4), we assume on the con-
trary that condition (9) is violated for some py € C. Choosing a vector gy € C™ as the solution of the
algebraic system W (po, e P")gy = 0, C (e "")gy = 0, we define the function x,,(t) = Re(goer""),
t > —mh, if it is nonzero and xp,(t) = Im(goeP*?), t = —mbh, otherwise.

The controller (4) ensures the identity (6) regardless of the initial conditions (3) and (5). We
set p(t) = xp, (1), t € [~mh,0], and @(t) =0, t € [tg — h,tg], in (3) and (5), respectively. The
characteristic matrix of system (1), (4) is given by

W(p,A) = BAU1(p, )C(A) —BA)U12(p; A)

Wi ) = Un(p O ol — Uns(p, )| (A1)

where e P" = \. From (A.1) it follows that the function col[z,,(t), 0], t > tg, is a nonzero solution
of the closed loop system (1), (4). This obviously contradicts (6).

Now we show the necessity of condition (10). By the definition of a finite stabilization output-
feedback controller, the spectrum of the system is finite, |IW(p, \)| = w(p), where w(p) is a poly-
nomial. Consider the auxiliary system

(I — ®o(Mn))&(t) = (AR)E(L) + T (Ap)u(t), ¢ >0, (A2)

where @o(\) = (D(N)), ®(\) = (A(N)’, ¥(\) = (C(\)), and @ is a piecewise continuous control
input. The initial conditions for system (A.2) are chosen similarly to those of (3).
For system (A.2) we define the controller

a(t) = Hi1(pp, An)E(t) + Hiz(pp, An)Z (1),
Z(t) = Ho(pp, An)E(t) + Haa(pp, Ap)E(t),

where Hii(p,\) = (BO\)Uwi(p, \)) and Hia(p, A) = (Uzi(p, ), i = 1,2. Let We(p,A) denote the
characteristic matrix of system (A.2), (A.3). It is easy to see that We(p,\) = (Wi(p,\))’, so

(A.3)
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|We(p, e P")| = w(p). Thus, there exists a feedback law for system (A.2) such that the closed loop
system has a finite (but not a priori given) spectrum, i.e., it is spectrally reducible. Therefore [15],
the condition rank[I,, — ®o(\), ¥(\)] = nVA € C holds, which is equivalent to (10). The proof of
Lemma 1 is complete.

Proof of Statement 1. The characteristic matrix Wy (p,e P") of system (1), (2), (34)-(36) is
given by

W(pv)‘)_B()‘)ROO(pv)‘)C(/\) _B()‘)R01(p7A) _B(A)ROZ(pv)‘)
Wi(p, \) = —Rio(p, )C(N) pln, — Rui(p, A) —Ri2(p, A) , (A4)
—(K(N)+B(\)Roo(p,N)C(A) —B(A)Ro1(p, A) pln, — Raz(p, A) — B(A) Roz(p, A)

where \ = e Pl

We represent the variable x9 in the relations (34)—(36) as a vector with two vector components:
r9 = col[xar, 292, where z9; € R™ and x99 € R3. Also, we partition the matrices R (p, \), i = 1,2,
and K(A) in (37) into blocks corresponding to the components 97 and x99 and write them in an
expanded form:

Ro2(p, A) = [Loo(p, MIL11(A), 0px3], Riz(p, A) = [L1o(p, M)II11(A), Ony x3],

AN (A) + Vi(WMC(A) Qua(p, A) Kou)] (A.5)
—-Ki(\)]

Roa(p, ) = ] , K(A) = [
Qa21(p, ) Q22(p; A)
Here, the blocks Q12(p, \) € R™3[\], Qa1(p, ) € R3*™[)], and Qaa(p, \) € R3*3[)\] correspond to
the block partition of the matrix Q(p,A) in (29) (the first upper block of the matrix (29) is the
matrix Ay (A) described by (22)), and K(X) = col[1,0,0]&] Cy,(\) (27).

Remark 7. Below it will be necessary to write the matrices partitioned into blocks. To fit them
on the page width, thus making the considerations more visual, we will occasionally omit arguments
in the notation of matrix blocks. For example, entries like B and Lgoll;; will indicate B(A) and
Loo(p, M1II11(N), respectively.

Using the block partition (A.5) and the definitions of the matrices Ko()\) (22) and B(\) (26),
we write the matrix (A.4) as

W + BLooIl12C —BLo1 —BLoolIT11 Onx3a
LioIT12C pln, — L1 —Lioll1y Onyx3
Wip,\) = ! ~ ! A6
1(}9, ) BLooIl12C+ (All12+V;,Cy)C  —BLo1  pln— All11 —V;,C — BLoolIl1y —Q12 ( )
K.C 031y —Q21 pls — Q22
In system (1), (2), (34)-(36), let us introduce a new variable ¢ as follows:
z21(t) = (In — D(Ap))x(t) +(t), t=>to. (A.7)
The change of variables (A.7) can be defined by the formulas
z(t) z(t) I Onxny Onxn  Onxs
£, £, 0 I, 0 0
.7)1() :Q()\h) -751() 7 Q(A): nixXn ni nixXn ni X3 7 |Q()\)’El
x91(t) e(t) I, — D(A\) Onxny, In Opxs
T22(t) T22(t) O3xn O3xny  O3xn I3

Due to these formulas, the matrix Wi (p, A)2(A) will be the characteristic matrix obtained after the
system replacement, and |W1(p, \)| = |Wi(p, \)Q(N)].
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Further transformations of the matrix Wi(p, A\)Q(\) require some relations. Note preliminarily
that the definition of the matrices II;;(\) implies

L1 (A) (I — D(N)) = 12(A)C(A) = I, (A.8)

Next, in the matrix (A.6), we add block no. (3,3) multiplied on the right by the matrix (I,, — D(X))
to block no. (3,1). Using formula (A.8), we have the following chain of equalities:

B(A)Loo(p; M1z (A)C(A) + (A2 (A) + Vig (A Cy (V) C(A)
+(pIn = AN (V) = VigWNE () = BO)Loo (p, N1t (V) ) (I — D(N)
= B(A)Loo(p, MIL12(A)C(A) + A(MILi2(A)C(N)

(I + C(MI2(N)C(N)

| (1, ~ poymapyey] P P
CONIL () (I = D(V) |
AMMMMU—DM»—%Q)« D@mi()f)mfpgn Y
—B(A)Loo(p, MT11(A) (I = D(X)) = =B(A)Loo(p, A) + p(In — D(A)) — A(N)
C(N) + C)(ha(N)C(A) = T (A) (I — D(N))
+Vio (M)
(I — DOV) (Tl (N C(A) = Tl (A) (I — D)) + (I — D(V))

= W(p,A) = B(A)Loo(p, ).

Then, in the matrix (A.6), we add the first row of block no. (4,3) multiplied on the right by the
matrix (I, — D(X)) to the first row of block no. (4,1). (Note that the remaining two lower rows of
the above blocks are zero, which follows from (29) and the form of the matrix K;()).) Using the
intermediate reasoning in the chain of equalities (A.9), we arrive at the relation

[1,0,0] K1 (A)C(A) = [1,0,0]Q21(p, \) (I — D(N))
_ ( (IZ+C(A)H12(A))C(A)] - C(MI1 () (In — D(N)) L, A0
— o\ L = DO (T = DO = L) (L= D)) | |~
Due to formula (A.8) and the relations (A.9) and (A.10),
W —BLoy —BLo —BLgolly Onx3
Wy V() = —Ly  plp, — L1 _Llonil Onyx3
W —BLy —BLoy pl,— All;y —V;,C — BLooll;1  —Q12
03%n 03%ny —Q21 pl3 — Qa2

In the matrix Wi (p, \)Q2(\), we multiply the first row of blocks by (—1) and add it to the third row,
replacing the third row of blocks with the result. Let £2; denote the matrix of this transformation.
Obviously, |Ql| =1 and

W —BLyy —BLn —BLgolliy Onx3
—L I, — L —Lqpll 0
WL (. N)Q(N) = 10 plp, 11 oty n1x3
0n><n 0n><n1 pIn - AHH - ‘/z'oc _Q12
_ _ (A.11)
03xn 03%n, Q21 pl3 — Q22
WO(pv )‘) W(pv )‘)

9

Ont1)x(ntny) Plnts — Q(p, )
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where the block W(p, A) is defined straightforwardly. The structure of the matrix (A.11) shows
that the function colle, z92] is defined by a system with the characteristic matrix I,+3 — Q(p, \)
(i.e., by system (30), which is pointwise degenerate). Therefore, eicol[e(t), 222 (t)] = 0, t > tg + t2,
i=1,n+2. So, for t >1t,, we have t; = to + t2 + y5h, where v5 is the maximum degree of the
variable A in the block f/Iv/(p, A), and the function col[z,z] is defined by a homogeneous system
with the characteristic matrix (14), which is also pointwise degenerate. Hence, for t; = t1 + t4,
where 1 is given by (12), the identities €,col[z(t), z1(t)] = 0, t > t1, hold. In combination with (A.7),
this result implies the pointwise degeneracy of system (1), (2), (34)—(36).

Due to the form of the matrix Q1 Wi(p, \)Q2(A) in (A.11) and equalities (28) and (13), the
eigenvalues of system (1), (2), (34)-(36) are determined by the roots of the polynomial d;(\)dg(\).
The proof of Proposition 1 is complete.

Proof of Lemma 2. Let us introduce the new variable X (t) = (I, — D(\p))x(t), t > 0, in sys-
tem (1). Then z(t) =p(Ay)X(t), t > hdegyIIp(N), and the function X (¢) is defined by the
delayed system

X(t) = AQO)Ip(A)X (1), t > hmg. (A.12)

As is known, the smoothness of the solution of the delayed system (A.12) increases by one when
increasing the time variable by the value mgh. Therefore, for the given number p; and ¢ > mgh +
(p1 — 1)moh = pymoh, the function X (¢) is such that X € C ([prmoh, +00), R™), and the desired
conclusion follows. The proof of this lemma is complete.

Proof of Lemma 3. By condition (10), there exist [15; 25, p. 228] polynomial matrices M;;(\)
and K;;(\) of appropriate dimensions such that

9

I, — D(A) = AB(A)M11 (M) —)\B()\)Mu()\)‘

—AMa1 () I, — AMas(N\)
(A.13)

—AK21(N)C(A) I} — AK9()\)

I, — D\ = AK11(\)C(\)  —AK(N) ‘ B

We define the matrices

011 (N) = Orsn, U12(N) = [AM12(2), AM1x(A), Opa

B O(r><n)
Usi(N\) = |=AK11(M\) |,
—AK51 ()
AMaa () AMa1 () 07
Usa(A) = [AB(A)M12(A) D(A) + AK11(A\)C(A) + ABA)M11(A) AK12()\)
O5¢rr AK91(AN)C(N) AK99(N)

Note that U;;(0) are zero matrices. Let us denote

In On><7“ 0n><n Onxl

- 3 0 I, 0 0rx1
- - 1 _ |Yrxn r rxn  Urx
I'(\) = E(Ispyrt1 — D(N)E™", where E T A

Orsn Oiser Opxnn g
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Direct verification shows that

r(\) =

I, — D(A) = AB(A)Mi1(A) —AB(A)Mia(A) —AB(A)Mi1(A) Onxt
—AM31(N) I — XMoo () —AMa1(N) Orxt
O Opser I, — D(A) = AEn(AN)C(\)  —AK1())
O7n O5¢rr —AK21(N)C(N) I} — AK95()\)

In view of the identities (A.13), we conclude that |[['(A)| = 1, and the relation (42) is immediate.
The proof of this lemma is complete.
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Abstract—This paper proposes new approaches to constructing equivalent Hamiltonian systems
for linear and nonlinear Lurie equations (differential equations containing the derivatives of
even orders only). The approaches are based on the transition from the linear part of the Lurie
equation to the normal forms of the corresponding Hamiltonian systems, with a subsequent
transformation of the resulting system. This scheme does not require complex and cumbersome
transformations of the original equation. The effectiveness of the formulas derived is illustrated
by examples.
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1. INTRODUCTION

Consider the differential equation

L(5)v=(5) 1o, 1)

where

2n—2 2n—4 +

L(p) = an +aip + agp ot an—1p2 + ap,,
M(p) = bop®™ + b1p®™ 2 + ... 4 by_10* + by,

are coprime polynomials (0 < m < n) and f(y) is a scalar continuous function. Equation (1)
describes the dynamics of a single-loop control system consisting of a linear link with the fractional-
rational transfer function W (p) = M (p)/L(p) and a nonlinear feedback with the characteristic f(y);
for example, see [1, 2]. Note that equations of the form (1) are often called Lurie equations.

The polynomials L(p) and M(p) contain degrees of even orders only. Differential equations
of even orders arise in many problems of control theory, the theory of Hamiltonian systems, the
theory of integrable equations, spectral theory, etc. In studies of such equations, an important
direction is the problem of introducing a Hamiltonian structure to them. The availability of such a
structure (as a consequence, the existence of first integrals and various types of symmetries) allows
advancing significantly in the analysis of systems dynamics. The issues regarding the existence of a
Hamiltonian structure for many types of differential equations and, accordingly, the construction of
an equivalent Hamiltonian system for equations (1) in various problem statements were discussed
in several research works, e.g., [2-9]. The problem statements below are close to those considered
in [10, 11].

In this paper, we present new approaches to studying the above issues. The approaches are
based on the transition from the linear part of the Lurie equation to the normal forms of the

20
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corresponding Hamiltonian systems, with a subsequent transformation of the linear and nonlinear
systems. The results obtained lead to effective algorithms for constructing the Hamiltonian of the
system. The results can be applied to analyze the dynamics of systems described by differential
equations of even orders as well as the stability and bifurcations of equilibria and periodic solutions
of linear and nonlinear Lurie equations.

2. BACKGROUND

We recall some concepts of systems theory, control theory [1, 2, 7, 8], and the theory of Hamil-
tonian systems [3, 4].

2.1. The Equivalence of Systems

Let A and B be two systems described by the input-output-state equations. Assume that these
systems have the same space U of inputs u(t) and the same space ) of outputs y(t). We denote
by S and 7T the state spaces of systems A and B, respectively.

Systems A and B are said to be equivalent if, for each state a € S, there exists a state 8 € T
such that the outputs of systems A and B will coincide for the same inputs u(t) € U and vice versa.
In this case, we will write A ~ B.

2.2. On the Observability of Systems

Consider a dynamic system described by the equation
= Ax + fu(t)a Yy = (x(t),c), (2)

where A is a square matrix of order n; £, ¢ € R™ are fixed vectors; the symbol (z,¢) indicates the
inner product of vectors x and ¢ from R". In this system, wu, y, and x denote the input, output,
and state, respectively.

Throughout this paper, vectors will be treated as column vectors unless they are explicitly stated
to represent row vectors in a particular formula.

We define a square matrix of order n:

c
A*c
D=| (A)% |, (3)
(A*)n—lc
where A* means the transpose of A and the vectors ¢, A*c, (4%)2c, ..., (A*)" !¢ are row vectors.

The matrix D is called the observability matriz of system (A.3). System (A.3) is said to be observable
if det D # 0.

2.3. On Hamiltonian Systems

An autonomous Hamiltonian system is a dynamic system described by the equation
¢ = JVH(z), ze€R™, (4)

where

H HA\T
J:OI 9 8)’

Hz) = (&2 22
I 0]’ VH(z) (axl’ " O2om
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0 and I stand for zero and identity matrices, respectively, of order n, and H(x) is a scalar real
smooth called the Hamiltonian of system (4).

A linear autonomous Hamiltonian system (LAHS) is a system of the form

d
d—f = JAz, z € R™, (6)

where A is a real square symmetric matrix of order 2n. The Hamiltonian of this system is given by
1
H(x) = 5(/13:,1‘). (7)

Below, the matrix JA participating in system (6) will be called the Hamiltonian matriz. Note
its properties as follows:

G1) If the matrix JA has an eigenvalue ), then the numbers —\, A, and —\ are also eigenvalues
of this matrix, with the same algebraic and geometric multiplicity and the same index.

G2) If the matrix JA has the eigenvalue A = 0, then the algebraic multiplicity of this eigenvalue
is an even number.

G3) The characteristic polynomial of the matrix JA contains degrees of even orders only.

Fach Hamiltonian matrix belongs to one and only one equivalence class of symplectically similar
matrices. In each such class, one representative, called the normal form, is often distinguished. The
kind of the normal form is determined by the properties of the root subspaces of the matrix JA.
We refer to [3, 9, 12, 13| for more details on the theory of normal forms and, in particular, the lists
of normal forms.

A specific feature of normal forms is that different normal forms may correspond to a given
set of eigenvalues with given multiplicities. As an illustration, consider fourth-order Hamiltonian
matrices having two pairs of prime pure imaginary eigenvalues +w¢ and £ws?, where w; > 0 and
wo > 0. In this case, there are two kinds of normal forms:

0 0 w O

0 0 0 owsy
—w1 0 0 0

0 —owy 0 O

JA = , where 0=1or c=—-1. (8)

In the case 0 = 1, the numbers wy¢ and wyi are called the eigenvalues of the first kind; in the case
o = —1, they are called the eigenvalues of the first and second kind, respectively. No symplectic
transformations can reduce the normal form with o = 1 to the normal form with o = —1.

The above properties of Hamiltonian matrices determine many important qualitative character-
istics of Hamiltonian systems (linear and nonlinear), such as strong stability properties, stability
in the linear and nonlinear formulation, etc.; for example, see [9-15].

As will be shown below, due to this fact, the problem of constructing an equivalent Hamiltonian
system for equation (1) may have qualitatively different solutions, namely, the resulting Hamiltonian
systems (6) may have different normal forms.

3. THE LINEAR PROBLEM
3.1. The Standard Change of Variables

We discuss the problem of constructing an equivalent Hamiltonian system first for the linear

equation
d
L{—)y=0. 9
(5)v )
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With the standard change of variables
a=y, =y, ..., 2=y, (10)
this equation is reduced to an equivalent system in the state space:
2= Agz, y=(z,0c0), (11)

where z, cg, v € R*™, the symbol (z,cg) indicates the inner product of vectors, and

0 1 0 O ... 0 O 1
0 0 1 0O ... 0 O 0
AO = , Co= . (12)
0 0 0 0O ... 0 1 0
—a, 0 —a,—1 0 ... —ap O 0

System (11) is Hamiltonian only for n =1, ie., when equation (9) takes the simplest form
y" + a1y =0. If n > 2 system (11) is no longer Hamiltonian. From this point onwards, we as-
sume that n > 2.

3.2. Constructing the Hamiltonian System

Since the polynomial L(p) contains degrees of even orders only, the roots of the equation L(p) = 0
have properties similar to properties G1 and G2 of Hamiltonian matrices. Therefore, the polyno-
mial L(p) with this set of roots can be assigned one or more normal forms with the same set of
eigenvalues.

We propose the following construction scheme of an equivalent Hamiltonian system for equa-
tion (9).

At the first stage, the roots of the equation L(p) =0 are used to determine possible normal
forms of the desired Hamiltonian system. One of the corresponding Hamiltonian matrices JA is
chosen.

The second stage is to define a nonzero vector ¢ € R?" and the Hamiltonian system

d
—=JAz, y=(a(t),0). (13)
dt
Theorem 1. Equation (9) and the Hamiltonian system (13) are equivalent iff system (13) is

observable.

This theorem can be supplemented by the following result. Let g = . , where
y(zﬁ—l)
y¥) denotes the kth-order derivative of the scalar function y = y(t).

Theorem 2. Assume that one of the possible normal forms of JA is chosen according to the
properties of the roots of the equation L(p) = 0. Assume also that the vector c is appropriately
chosen to make system (13) observable. Then the change of variables x = D~'f, where D is the
observability matriz of system (13), reduces equation (9) to the equivalent Hamiltonian system (13)
with the Hamiltonian (7). In addition, the matrices Ay and JA are related by the equality Ay =
D(JA)DL.

The proofs of Theorems 1 and 2 and other main results are postponed to the Appendix.
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Remark 1. According to Theorems 1 and 2, for equation (9), the problem of constructing an
equivalent Hamiltonian system in normal form may have a nonunique solution. In other words,
equation (9) can be reduced, via linear nondegenerate transformations, to qualitatively different
Hamiltonian systems of the form (13) in the sense that the corresponding Hamiltonian matrices
belong to different equivalence classes of symplectically similar matrices.

Note also that for equation (9), the problem of constructing an equivalent Hamiltonian system
with a particular normal form may be unsolvable. This situation arises, e.g., when the equation
L(p) = 0 has multiple roots. In this case, equation (9) may lead to such normal forms of Hamiltonian
matrices for which the corresponding system is unobservable for any vector c.

3.8. A Linear Link with Two Degrees of Freedom
As an illustration, consider the fourth-order Lurie equation
y" +ay” + by = 0, (14)
where the real coefficients a and b satisfy the conditions
a>0, b>0, d=a>—4b>0. (15)
In this case, all the four roots of the characteristic equation
M+aN+b=0

are different and pure imaginary of the form +iw;, +iws, where the numbers w; > 0 and wy > 0
satisfy the equation w* — aw? +b =0, i.e.,

a—l—\/a

2 )

a—+d
5 .

w% = w% = (16)

Now we discuss the construction of an equivalent Hamiltonian system for equation (14).

Let us utilize the above scheme. In the problem under consideration, equation (14) can be
reduced to two different normal forms of the desired Hamiltonian system, namely, the matrix (8)
for o = 1 and o0 = —1. With an appropriate choice of the vector ¢ € R*, it is possible to obtain two
qualitatively different LAHSs (13) with the normal form (8) of the matrix JA that are equivalent
to equation (14) both for o =1 and for o = —1.

To show this fact, let ¢ = (¢, ¢2,0,0) be some vector such that cjco # 0. Then equation (14)
can be reduced to the Hamiltonian system (13) via a linear nondegenerate transformation.

Indeed, to apply Theorem 1, we should establish the observability of system (13) with the normal
form (8) of the matrix JA. We have

0 —w%cl 0
* 0 N2 —owgq 3 0
(JA)*c = wier | (JA")?c = 0 , (JA®)c= —w%cl . (17)
owaCy 0 —ow3co

Hence, the matrix (3) takes the form

C1 C9 0 0
0 0 wicl  Ow2Cy
D(c) = 18
(c) —wic; —owicy 0 0 ' (18)
0 0 —wic) —owics
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and
—cAduiws(w? —wd)?  ifo=1
det D(c) = 9 o A A —
cicswiwa(w] — ws) if o0 =—1.
This means that det D(c) # 0 for cjc2 # 0 and wy # wy. Thus, the matrix D(c) is nonsingular (re-
versible), and system (13) is observable accordingly. By Theorem 1, equation (14) and system (13)

Y

/
are equivalent. By Theorem 2, the change of variables § = D(c)x, where § = yy,, , reduces sys-

"

Y
tem (13) to the scalar differential equation (14). The solutions y(¢) and z(t) of equation (14) and

system (13) are related by the equality y(t) = c121(t) + coxa(t).

Thus, an equivalent Hamiltonian system for the linear equation (14) has been constructed.
Once again, we underline that equation (14) can be reduced to two different Hamiltonian repre-
sentations (13) with the normal forms (8). Additional information about the object under study is
required for a particular choice of the normal form.

EXAMPLE 1

The planar bounded circular three-body problem is one of the most interesting problems in ce-
lestial mechanics; for example, see [13, 16-18]. In the linear statement, the problem of investigating
the motion of a small-mass body in the neighborhood of triangular libration points leads to the
differential equation

27
vy + - py = 0. (19)

Its characteristic equation has the form
27

Following the above scheme, we pass from equation (19) to an equivalent LAHS of the form (13).

Let p € (0, n*)U(1 — p*, 1), where p* = % - @ ~ 0.0385. In this case, all the four roots of equa-

tion (20) are pure imaginary: Ajo = fwi(p)i, A3 4 = £wo(p)i; here

) =\ s T 2T . ) =\ 3+ 2T 21— ).

Hence, there are two kinds of the normal forms (8). For a particular kind determined from certain
considerations, we choose, e.g., the vector ¢ = (1,1,0,0,0). Using (17) and (18), we construct the
matrix D = D(c), which turns out to be nonsingular. Consequently, with the change of variables
g = D(c)z, equation (19) can be reduced to an equivalent Hamiltonian system of the form (13),
and their solutions y(¢) and x(t) are related by the equality y(t) = x1(t) + z2(t).

Note that according to the analysis of the original three-body problem statement [13], one should
take 0 = —1 in the normal form (8).

4. THE NONLINEAR PROBLEM
4.1. Main Results

Now we discuss the problem of constructing an equivalent Hamiltonian system for the nonlinear
Lurie equation (1).
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As in the linear problem, the first stage is to determine possible normal forms of the linear
part of the desired Hamiltonian system using the roots of the equation L(p) = 0. And one of the
corresponding Hamiltonian matrices JA is chosen.

At the second stage, it is necessary to define a nonzero vector ¢ € R?" and the linear Hamil-
tonian system (13). Assume that this system is observable. Let D = D(c) be the corresponding
observability matrix.

We define the vectors

oA
V2 y f(y)
0 Y (f(y))
v=|m |, = : N T B AC2) (21)
0 yery (e
L V2on

where the t-derivatives ) and (f(y))*) of given functions y = y(t) and f(y(t)), respectively; the
coordinates of the vector v are given by

Y2=Y=...=Yon—2m—2=0, Yon_2m = bo, (22)
Yon—2m+2 + Von—2ma1 = bi, ..., Yon + Yon—201 + ... + Von—2mQm = by

Also, we define a rectangular matrix of order 2n x (2n — 2) :

0 0 0 0 0 0
0 0 0 0 0 0
w00 0 00
T = 0 Y2 0 0 0 0
Yon—2 0 y—qa O ... 0 O

0 2n-—2 0  72p-4 ... 0 72|

Lemma 1. Assume that the linear system (13) is observable. Then the change of variables

z = (D(e)" Mg~ Tf(y)] (23)

reduces equation (1) to the system

= JAx + Ef(y), v = (2(t),0), (24)

where the matriz JA is the chosen normal form and & = (D(c))™ 1.

Lemma 1 can be verified by direct calculation.

Note that equation (1) and system (24) are equivalent. However, the nonlinear system (24)
obtained via the change (23) is not necessarily Hamiltonian.

Recall that the vector ¢ is chosen only from the observability condition of the linear system (13).
This provides much freedom when choosing the vector c. As it turns out, under some additional
conditions imposed on the vector ¢, the nonlinear system (24) will be Hamiltonian. In particular,
we have the following result.

Lemma 2. Assume that the vector c is chosen based on two requirements:
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e The linear system (13) is observable.
e For some real number o,

v=aD(c)Jc, (25)

where D(c) is the observability matriz of system (13), v is the vector (21), and J is the
matriz (5).
Then the change of variables (23) reduces the nonlinear equation (1) to a Hamiltonian system of
the form (24) with the Hamiltonian

H(z) = %(A:L‘,x) +aF((z,c), (26)

where F(y) is the primitive of the function f(y), i.e., F'(y) = f(y).

Remark 2. Equality (25) in expanded form comes to a system of n linear algebraic equations
with the 2n unknowns

2 2 2
acy, acy, ..., acy,

and the parameter «. These equations include the coefficients determining the kind of the chosen
normal form. As a result, the system of equations (25) is solvable only for one choice of the normal
form. In other words, in contrast to the linear problem, the nonlinear one has a uniquely determined
kind of the normal form of the Hamiltonian system constructed. This fact will be proved below for
systems with two degrees of freedom.

Thus, we have the following result.
Theorem 3. Assume that a possible normal form JA is chosen in accordance with the properties
of the roots of the equation L(p) = 0. Let the vector ¢ be chosen so that:
1) The linear system (13) is observable.
2) Equality (25) holds for some «.

Then the change of variables (23) reduces equation (1) to the equivalent Hamiltonian system (24)
with the Hamiltonian (26), and the kind of its normal form is uniquely determined.

4.2. Equations with Two Degrees of Freedom

As a basic application, consider the fourth-order equation

L(5)v=(5) o), (27)

where
L(p) =p* +ap*+b, M(p) = bop* + b (28)

are coprime real polynomials and f(y) is a scalar continuous function. Equations of the form (27)
are often called equations with two degrees of freedom.

As in Section 3.3, by assumption, the coefficients a and b of the polynomial L(p) satisfy (15).
Hence, all the four roots of the polynomial L(p) are pure imaginary of the form +iw;, +iws, where
the numbers wy > 0 and we > 0 are given by (16). We will construct an equivalent Hamiltonian
system for equation (27) using Theorem 3.

As noted in Section 3.3, two different normal forms of the desired Hamiltonian system correspond
to the polynomial L(p), namely, the matrices (8) for o = 1 and 0 = —1. By analogy with Section 3.3,
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we choose a vector ¢ = (c1,¢2,0,0,0) such that cico # 0. In this case, the linear system (13) is
observable.

It remains to ensure condition 2) of Theorem 3, i.e., choose the vector ¢ so that equality (25)
holds. In this equality, D(c) is the matrix (18), and the four-dimensional vector v is given by (21)
and (22) with respect to equation (27):

0 0

el bo

T 1o | T 0
Y4 by — abg

Therefore, equality (25) comes to the system of two equations

3.2

a(wie? + owacd) = —o
a(wic] +owic3) =1

with the unknowns ac? and ac3. Hence, we obtain

2 _ w32 + Y4 2 _ wiy2 + Y4

oac] = ——5——~ ——.
L ol — )’ sun(w? — o)

Due to the coprimeness of the polynomials (28),

(Wivz +74)(Wiy2 + va) # 0.

Therefore, a £ 0 and

(5) =2
— | =—0—k,
(6] w1
where
w32 +
K= 5. (29)
wiy2 + 74

Thus, equation (25) is solvable only for o =1 (if k < 0) or only for 0 = —1 (if x > 0).
Let £ < 0 (k > 0). In this case, the following values can be taken as the solution of equation (25):

2
=1 ey O <02: /£>, a:%, (30)
KW Kwsg w1 (wl - WQ)

In other words, the following result has been established.

Theorem 4. Assume that k <0 (k > 0). Let the numbers «, c1, and c3 be given by (30). Then

the change of variables (23) reduces equation (27) to the equivalent Hamiltonian system (24) with
the Hamiltonian (26):

1
H(x) = Q(A:c,x) + aF(z1c1 + 2202),

where F(y) is the primitive of the function f(y), i.e., F'(y) = f(y). In addition, the kind of the
normal form (8) is uniquely determined: o =1 in the case k < 0 (0 = —1 in the case k > 0).

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025



LURIE EQUATIONS AND EQUIVALENT HAMILTONIAN SYSTEMS 29

EXAMPLE 2
Consider equation (27) of the form
y" +5y" + 4y = (f(y)" +3f (). (31)
In other words, we have the polynomials (28) with a =5, b =4, by = 1, and by = 3. Then w; = 2
0
and wo = 1, and the vector v is v = (1) ,i.e, 2 =1and v = —2.
-2

Formula (29) yields k = —1/2 < 0. By Theorem 4, the kind of the normal form (8) is uniquely
determined: o = 1. Next, the values (30) are ¢; =1, ¢ =2, and o= —1/6.

According to Theorem 4, the change of variables (23) with the matrix D(c) (18), w1 = 2, wy = 1,
o=1, ¢ =1, and ¢y = 2 reduces equation (31) to the equivalent Hamiltonian system (24) with
0
0
1/6
1/3

the matrix JA (8) with w; = 2, wy = 1, 0 = 1, and the vector £ = (D(c)) "1y equal to & =

The Hamiltonian of this system is

2 2 2 2 2 2 1
H(x): x1+x2—; x3+x4—6F($1+2x2).

5. CONCLUSIONS

This paper has proposed new approaches to constructing equivalent Hamiltonian systems for
linear and nonlinear Lurie equations (differential equations containing derivatives of even orders
only). The approaches are based on the transition from the linear part of the Lurie equation to the
normal forms of the corresponding Hamiltonian systems, with a subsequent transformation of the
resulting system. This scheme does not require complex and cumbersome transformations of the
original equation. It has been demonstrated that, in the linear case, the problem of constructing
equivalent Hamiltonian systems can lead to qualitatively different systems. At the same time,
for nonlinear systems, the above problem is uniquely solvable in a natural sense. The Appendix
contains similar results in a general formulation (without requiring that the original equations
contain derivatives of even orders only). The main results have been reduced to computational
formulas and algorithms.
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APPENDIX

Auziliary Constructs

The proofs of the main theoretical results of this paper are based on the following auxiliary
assertions of a general nature. They concern not only Hamiltonian systems and are of independent
interest.

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025



30 YUMAGULOV, IBRAGIMOVA

Consider a system described by the nth-order differential equation
d d
Ll—)y=M|— t

L(p)=p"+ ap” 4 L H an_1p + an,
M(p) = bop™ + bip™ 4 by

where

are coprime real polynomials of degrees n and m (n > m > 0).

(A1)

(A.2)

For equation (A.1), it is required to construct an equivalent system described by the equations

¥ = Az + &u(t), y=(x(t),c),

(A.3)

where A is a square matrix of order n, &, ¢ € R™ are fixed vectors, and the symbol (z, ¢) indicates the
inner product of vectors x and ¢ from R". The inverse problem is to construct from system (A.3)

an equivalent system described by the differential equation (A.1).
The simplest transition is from (A.1) to the equivalent system

2= Agz +qu(t), y=(2(t),c0),

where ¢y = (1,0,0,...,0),

0 1 0 0 ;
0 0 1 0 0 ! n
22 Y2
AO = e , A= . y V= .

0 0 0 .. 0 1 '
Zn Tn

—Qp —Ap—1 —Ap—2 ... —aA2 —ai
and the coordinates of the vector v are given by

M=7=...=Y-m-1=0, Yn—m = bo, Yn—m+1 T Vn—m@1 = by,

ey Yatn-101+ oo+ Yaemlm = b

Direct calculation shows that the transition from equation (A.1) to system (A.4)
mented via the change of variables z = ¢ — T'u, where

Yy u
Yy o'
g - . ) U= . )
y(n—l) w(m=2)

and the rectangular matrix 7' of dimensions n x (n — 1) has the form

0 0 0o ... 0

Y1 0 0 ... 0

7| w wm 0 .0
| n—1 Tn—-2 Tn-3 --- V1 |
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Similar problems arise for nonlinear systems. In them, the analog of equation (A.1) is a nonlinear

feedback system described by
d d
Ll—=)y=M|—
(5)v=2(5) 1w

where L(p) and M (p) are the polynomials (A.2) and f(y) is a scalar continuous function. The
analog of system (A.3) is the one described by

o' = A+ Ef(y), y=(xt),0).

Various issues related to these problems were discussed in many works. Let us emphasize the
fundamental monograph [8] with a detailed analysis of basic concepts (“system,” “equivalence,”
“transfer function”, etc.) and, moreover, constructive methods for designing equivalent systems
(within the linear theory).

To study the problems formulated here, we consider the following systems described by input-
output-state equations:

e system A (A.1),
e system B described by the equations

o' = Az + &u(t), w=(z(t),0), (A.8)
e system C described by the equations
7= Aoz +u(t), v=(2(t),co). (A.9)

Note that systems (A.8) and (A.9) are the same systems (A.3) and (A.4). They are presented
in a new form only to avoid confusion with the notation of the outputs of the systems under
consideration.

Let the input space of systems A, B, and C be the set C"-smooth functions u(t), and let their
state space be the space R™. For a given input u(t) and a given initial state Jo = (Y0, Y1, - - - Yn—1)
(at the time ¢ = 0), we define the output y(¢) of system A as the solution of the Cauchy problem

L (%) y=M (%) u(t)
y(0) =50, ' (0) = w1, ...,y "D (0) = yp_1.

For a given input u(t) and a given initial state zo € R™ (at the time ¢ = 0), we define the output w(t)
of system B by the equality w(t) = (z(t), ), where z(t) is the solution of the Cauchy problem

' = Az + Eu(t)
x(0) = xo.

The output v(t) of system C is defined by analogy.
The following assertions are true.
Theorem 5. Systems A and C are equivalent.
Theorem 6. Systems B and C are equivalent iff system B is observable, Ay = DAD™!, and

v = DE, where D denotes the observability matriz of system B and the vector v consists of the
coordinates (A.5).

Assume that systems B and C are equivalent. Then system (A.4) is reducible to system (A.3)
via the nondegenerate change of variables x = D™z,
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Theorem 7. Systems A and B are equivalent iff system B is observable, Ay = DAD™', and
v = DE.
Assume that systems A and B are equivalent. Then equation (A.1) is reducible to system (A.3)

via the change of variables
z=D"'(y - Ta),
where the matriz T and the vectors § and @ are given by (A.7) and (A.6), respectively.
Theorem 5 is a well-known result; for example, see [2, 7, 8]. The validity of Theorem 7 follows
from Theorems 5 and 6. Theorem 6 is established by standard methods of systems theory.

Proof of Theorem 1. Necessity. Let equation (9) and the Hamiltonian system (13) be equivalent.
Then, by Theorem 7, system (13) is observable and the equality A9 = D(JA)D~! holds with the
matrix Ag (12) and the observability matrix D of system (13).

Sufficiency. Let system (13) be observable. It is required to prove the equivalence of equation (9)
and the Hamiltonian system (13). For this purpose, we show that the output y(t) = (z(¢),c) of
system (13) is also that of equation (9) under an initial state yo such that yo = (2(0),c) and,
conversely, that each output y(t) of equation (9) is also the output of system (13) under an initial
state g such that yo = (zo, ¢).

Let us restrict the considerations to the case n = 2 (i.e., system (13) is four-dimensional). Then
equation (9) takes the form (14) and, therefore, L(p) = p* + ap? + b.

For the output y(t) = (z(t), ¢) of system (13), we have
y = 0)=(x,4%), ¢"=(x,(4)%), y" =(z,(4%)%).
Hence,
y" + ay” + by = (z,(A") ) + (2, (A")?c)a + (z,¢)b = (z, [(A")* + a(A*)? 4 bI]c) = 0,
since the matrix A (and, consequently, the transposed matrix A*) satisfies its characteristic equation
p* + ap? + b= 0. Thus, the function y(t) = ((t),c) is the solution of equation (9).

Now, let y(t) be the output of equation (14); the corresponding initial state is o = (yo, y1, Y2, y3)-
We determine the initial state zg of the four-dimensional system (13) from the system of equations

(zo,¢) = yo, (x0,Ac) =y1, (w0, (A*)%c) =y, (z0,(A%)%c) = y3

or (which is the same) from the equation D(c)zo = go. Due to the observability of system (13), this
equation has the unique solution 2o = (D(c))~'¢o. Obviously, the output of system (13) under this
initial state xg coincides with the function y(t).

The proof of Theorem 1 is complete.
Proof of Theorem 2. This result is immediate from Theorem 7.

Proof of Lemma 2. According to Lemma 1, the change of variables (23) reduces equation (1) to
system (24). To establish Lemma 2, it remains to show that the function (26) is the Hamiltonian
of system (24), i.e., the validity of the relation

JVH(z)=JAz +£f((c,x)).
Since JVH (z) = JAz + aJVF((z,c)), we have to verify the equality
aJVFE((x,¢)) = £f((c, ).

We have VF((z,c)) = f((c,z))e, which yields JVF((x,c)) = f((c,x))Jc. Thus, it is necessary
to show aJe = €. In turn, this equality follows from (25) and the relation £ = D717y (see Lemma 1).
The proof of Lemma 2 is complete.
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Abstract—Based on the requirements for optimization methods of high-speed aircraft inter-
ception systems (see part I of the study), different ways to optimize guidance methods are
analyzed. The capabilities of the classical theory of optimal control, as well as its modifica-
tions with local optimization and local optimization by the minimum of quadratic-biquadratic
performance functionals, are considered at the qualitative level within the concept of inverse
dynamics problems. In addition, the ways to optimize the information support of all approaches
are assessed.

Keywords: statistical theory of optimal control, local optimization, quadratic-biquadratic per-
formance functional, inverse dynamics problem, adaptive analog-discrete filtering

DOI: 10.31857/50005117925010031

1. INTRODUCTION

The military and technical perfection of guidance systems is largely determined by the ways to
optimize control laws and their information support, representing the basis for their development.
Currently, many optimization methods known match the requirements of an accurate and cost-
efficient operation to different degrees [1]. Note those of the statistical theory of optimal control
(STOC), which are used to design the best guidance systems jointly in terms of accuracy and control
costs. These methods are based on the principle of minimizing quadratic performance functionals,
which contain both control errors and energy costs of control implementation.

In this class of optimization ways, it is necessary to distinguish rather complex classical STOC
methods, ensuring the optimality of guidance systems for the entire interception time [2-9], and
simpler ones, ensuring their local optimality for each current time instant [2-4, 10-12].

In the practical development of complex technical systems for various purposes, design methods
based on the concept of inverse dynamics problems (IDP) [13-18] are also used. Their peculiarity
lies in the sufficiently simple consideration of different nonlinearities during the control design
procedure.

Gradient methods are most widespread among the design ways neglecting the energy consump-
tion of control signals [1, 19]. These methods optimize control laws in terms of different performance
functionals having an extremum on the system operation interval.
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Various modifications of Kalman filters are often used to optimize information systems [3, 4,
20-23].

In recent time, the so-called intelligent optimization methods based on neural network ap-
proaches [24, 25] have been gaining popularity in the design of systems operating under a priori
uncertainty.

The analysis of the requirements for the optimization methods carried out in [26] demonstrated,
first of all, the possibility of forming nonstationary guidance methods, the possibility of operation
in a given domain of application conditions and constraints, and the possibility of implementation
by the dynamic properties of the carrier and the capability of estimating the coordinates used in
the guidance method. Note that the latter possibility can be assessed only based on the design
results of particular guidance methods.

Practical ways to implement nonstationary guidance methods with the possibility of changing
control and information priorities during flight, based on time-varying state models and coefficients
of penalty matrices for accuracy and cost-efficient operation as functions of range and speed, were
discussed in detail in [4].

The methods for designing guidance laws for high-speed aircraft (HSA) based on the classical
STOC approach in the Letov—Kalman formulation and its local modification (with the mismatch
between the dynamic properties of the target and the interceptor treated as disturbances) were
also considered in [4].

Below, we qualitatively assess different ways to optimize guidance methods to HSA that match,
to a greater or lesser extent, the requirements discussed in [26].

Note that the sections and formulas mentioned below have a double numbering system: the first
digit corresponds to the part of the study whereas the second to the section or formula.

2. THE CLASSICAL OPTIMAL CONTROL THEORY IN THE LETOV-KALMAN
FORMULATION: ANALYSIS OF CAPABILITIES

Consider the mathematical apparatus of the conventional statistical theory of optimal control
[3-9] in its simplest form when applied to the problem under study. For an interceptor described
by

Xint () = FintXint (t) + Bintu(t) + &int (t), Xint(0) = Xinto, (2.1)
intended for a target with a trajectory
Xtar (1) = FrarXtar (t) + &tar(t), Xtar(0) = Xtaro, (2.2)
under available measurements
2(t) = Hx(t) + &(0), x() = [xE, (1) x5,(1)] . (2.3)
this apparatus yields the optimal control law
u(t) = K 'BL P(t)[Xar (t) — Xine(1)], (2.4)
P(t) = —L — Fi P(t) - P()Fins + P(1) Bi K 'B{, P(t), Pl(tan) = Q, (2.5)

in terms of the minimum value of the quadratic Letov—Kalman performance functional

I=M {[Xtar(tﬁn) — Xint (tﬁn)]TQ[Xtar(tﬁn) — Xint (tﬁn)]

- / [Xtar (t) — Xing (£)] T LXtar (t) — Xing (£)]dt + / uT(t)Ku(t)dt}. (2.6)
0 0
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Here, xiyt and Xt,, are the n-dimensional vectors of interceptor and target states, respectively;
Fint and Fy,, are the internal connection matrices of the processes (2.1) and (2.2); u is the r-dimen-
sional control vector (r < n); By is the control efficiency matrix; z is the m-dimensional measure-
ment vector (m < 2n); H is the connection matrix of (2.1) and (2.2) with (2.3); P is a symmetric
matrix defining the current weight of the control errors; ¢ and tg, are the current and final control
time, respectively; Q and L are nonnegative definite penalty matrices for the final and current
control accuracy, respectively; K is a positive definite penalty matrix for control signals; &int, Etar,
and &, are the vectors of centered Gaussian noises of the state and measurement vectors, respec-
tively; finally, Xi,y and X, are the vectors of the optimal estimates of the processes (2.1) and (2.2),
respectively.

Note that the minimized functional (2.6) includes three terms. The first, terminal, defines the
system accuracy at the final time instant of control; the second, the integral accuracy over the
entire control time; and the third, the energy consumption of control signals. Minimizing the
performance functional (2.6), the control law (2.4), (2.5) is jointly the best in terms of accuracy
and cost efficiency, which is an undoubted advantage.

Direct analysis of (2.1)—(2.5) leads to several general conclusions.

1. The control law (2.4), (2.5) depends on the system state Xjy; and Xy, its capability to per-
ceive control signals (determined by the matrix Biy), the penalties K for control signals, and the
weight matrix P. The larger the control penalty is, the smaller the signals u will be (accordingly,
the more cost-efficient the system will be but the less accurate). The latter is due to that small
values of u cause small values of Xxj,¢ in (2.1), and consequently small targeted changes of Xjut.
If system (2.1) perceives the control signals u well (the matrix Biy; has large coefficients), then it
is reasonable to make them large: in this case, there will be large values of X, and the system
will quickly change its state xint. If the coefficients of the matrix B, are small, then large control
signals should not be used, as it will result in unreasonably high energy consumption with very
little gain in accuracy.

2. In (2.4), the coefficients of the matrix P aggregately describe the current accuracy and cost
efficiency penalties determined by the matrices L and K, the deterministic connections, and the
efficiency of the control signals conditioned by the matrices Fiyt and Biy. The impact of determin-
istic connections is manifested in that a change in the penalty /;; for the operation accuracy on some
coordinate z; causes a change in the accuracy on other coordinates functionally connected with x;.
The corresponding changes in the matrix P lead to changes in control signals and, consequently,
in the system’s efficiency.

3. The peculiarity of (2.4), (2.5) is that the coefficients of the matrix (2.5) are calculated in
inverse time from tg, to ¢ when solving the Riccati equation, while in (2.4) they are used in direct
time. Note that, due to the number of equations in (2.5) to be solved for determining the matrix P,
the control formation complexity significantly exceeds that of the optimized system (2.1). Moreover,
even a slight increase in the dimension of (2.1) leads to excessively many equations to be solved when
calculating the matrix P. (The number of the equations is n2.) This phenomenon, called the curse
of dimensionality and characteristic of many optimal systems, restrains the application of optimal
control algorithms for high-dimensional complex systems. However, for time-invariant systems,
the matrix P, defined only by a priori information, can be obtained in advance. Accordingly, the
coefficients K™1BL P(¢) for (2.4), whose number is defined by the dimension 7 x n, can also be

calculated in advance. Hence, the procedure of using (2.4), (2.5) becomes somewhat simpler in
practice.

4. Assigning different penalties L and Q to the current and final accuracy allows implementing
different errors at different operation stages of the interception system, thereby ensuring the desired
accuracy at the end of control under very low current energy costs.
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For the problem of designing a guidance method to HSA with the apparatus (2.1)—(2.6), we
draw the following conclusions:

e By adjusting the form the matrices Q, L, and K, using the representation of their elements as
a function of the state coordinates, it is possible to form a time-varying guidance law [4] with
the redistribution of control functions depending on the value of the state coordinates with a
significant complication of the calculation procedure of (2.5).

e The linear dependence of (2.4) on the control errors (Ax = X¢ar — Xint) does not provide an
enhanced role for control to withdraw from the stability loss bounds.

e To implement (2.4), (2.5), the guidance time should be known, which is practically impossible.

e When linear (linearized) state models are used, the control law (2.4), (2.5) ensures accept-
able universality of the guidance method, implementing stable operation in a wide range of
application conditions [3].

e The need to solve the high-dimensional two-point boundary value problem due to resolving
equation (2.5) in reverse time from tg, to t, while the control law (2.4) is formed in direct time
from t to gy, significantly complicates the control design procedure.

e In the law (2.4), the dependence of the control signal on the dynamic properties of the inter-
ceptor (Fin) is considered in a complex way when solving (2.5), which makes it difficult to
predict its significance in interception problems.

e The capability to form all the optimal estimates X,y and Xar, required to implement (2.4), is
determined by the observability condition [3], see Section 6. The fulfillment of this condition
depends on the internal connections of (2.1), (2.2) and the set of measurement sensors in (2.3).

In conclusion, we underline that the classical optimal control theory in the Letov—Kalman for-
mulation does not satisfy all the requirements for implementing the guidance method to HSA.

The most challenging obstacles to optimizing interception methods using this method are the
need to know the guidance time and the complexity of solving the two-point boundary value
problem.

3. LOCAL OPTIMIZATION METHODS BY THE MINIMUM OF QUADRATIC
PERFORMANCE FUNCTIONALS: ANALYSIS OF CAPABILITIES

It seems more promising to use local optimization methods that minimize performance func-
tionals for each current time instant without requiring knowledge of the guidance time. Then it
is possible to generate control without solving the complex two-point boundary value problem,
which significantly simplifies the control design procedure. Moreover, within this approach, various
disturbances affecting the interceptor can be quite simply considered directly in the control law
without expanding the state vector. In this case, for an interceptor described by

kint (t) = Fintxint (t) + Bintu(t) + Sint (t) + £int (t)7 Xint (0) = Xint0; (31)

intended for an HSA with the trajectory (2.2) under the available measurements (2.3), the local
optimization method [3] yields the optimal control law

u(t) = K'Bih, [Q(%ear () — Xine (1)) — Gine(t)] (3.2)

in terms of the minimum value of the performance functional

I=M {[Xtar(t) — Xint (t)]TQ[Xtar(t) — Xint (t)]

+ 2[x¢ar (t) — Xint ()] T Gsing (t) + sit, (8) Qsing (1) + / uT(t)Ku(t)dt} . (3.3)
0
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Here, siyz and Siy are the n-dimensional vectors of the measured disturbances affecting the
interceptor and their optimal estimates, respectively; G is a nonnegative matrix defining the weight
of disturbances in the control law (3.2).

For the problem of designing a guidance method to HSA [26], the analysis of (3.1)—(3.3) leads
to the following conclusions:

1. Using the coefficients of the matrices Q and G as functions of the state coordinates (the
range and approach speed), it is possible to generate control laws [4] with rather easily assigned
instants of, first, changing control priorities during guidance and surveillance trajectory control [4]
and, second, adjusting the effects of disturbances on different interception trajectory sections.

2. The method has high implementability due to the following features:

e the capability to optimize the guidance system for a particular carrier by forming additional
correction signals that compensate for its inertia;

e the capability to consider a wide range of natural and virtual disturbances [3] in the form of
mismatches between the dynamic properties of the target and interceptor, the prediction of
the target’s spatial position compensating for the carrier’s inertia, the approach of the state
coordinates to acceptable stability loss bounds, etc.;

e the simplicity of control signals formation for each current time instant (there is no need to
know the guidance time and solve the complex two-point boundary value problem).

The capability of estimating all state coordinates used in the guidance method can be determined

only by the results of designing particular control laws.

3. The method possesses high universality, characterized by the capability to design stable
guidance methods in a wide field of application conditions, including those not corresponding to
the models underlying the design procedure [4].

4. The method does not guarantee withdrawal from the stability loss bounds due to the linear
dependence of (3.2) on the control errors.

4. LOCAL OPTIMIZATION METHODS BY THE MINIMUM
OF QUADRATIC-BIQUADRATIC PERFORMANCE FUNCTIONALS:
ANALYSIS OF CAPABILITIES

According to the capabilities of guidance design schemes with local optimization methods by
the minimum of conventional quadratic performance functionals [4] (see the above analysis), the
problems of withdrawing the carrier from stability loss bounds and using the derivatives of the
line-of-sight (LoS) angle rate in control laws are still challenging, which significantly complicates
their information support procedure.

Both problems can be solved by applying guidance methods with a nonlinear (cubic) dependence
on the control errors generated during the local minimization of quadratic-biquadratic performance
functionals [3, 27].

In the elementary case, for the interceptor (2.1) intended for a target with the trajectory (2.2)
under the available measurements (2.3), this approach yields the optimal control law

u(t) = KB {Q+ 2 [Ax()A% () R| } A%(t), AX(t) = Xiar () — K (),  (41)

in terms of the minimum value of the performance functional
t
I=M {Ax(t)TQAx(t) +x()" [Ax()Ax(t)"R] Ax(t) + / uT(t)Ku(t)dt} . (42)
0
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Direct analysis of (4.1) brings to the following conclusions.
1. The control signal consists of two parts: the first

K 'Bl,QAx(t) (4.3)
determines its linear component whereas the second

2K 'BT

int

A% (1) A%(t)"R| Ax(t) (4.4)

the cubic component. In addition to the terms proportional to Az} (i = 1,n), formula (4.4)
contains the combined terms Az?Az; and AxiAa:? (i=T1,n, j=1,n,i#j).

2. The relationships between (4.3) and (4.4) depend on the coefficients of the matrices Q and R
and, moreover, on the relationship between the control errors Az; and Ax;.

For small errors (Ax; — 0), the cubic component has almost no effect on the control signal and
guidance accuracy, ensuring the high sensitivity of (4.1) to small errors.

Under large values of Ax;, the cubic component becomes predominant, accelerating the handling
of dangerous control errors.

The resulting control laws [4, 27] do not require estimating the derivatives of the LoS angle rate;
the role of such estimates is played, to some extent, by the terms Aw%Aacj and AJ)Z‘AJ)?.

3. By manipulating the particular composition of the coefficients in the matrices {Ax(t)Ax(t)T}
and R, one can obtain different control laws with different sets of the combinational components.

4. Using the local optimization method by the performance functional (4.2) allows preserving
all its advantages discussed in Section 3.

According to the analysis results [3-9], the mathematical apparatus of the local version of the
statistical theory of optimal control with minimizing quadratic-biquadratic performance functionals
is preferable to satisfy the set of requirements listed in [26]. This apparatus implements a wide
range of control laws jointly the best in terms of accuracy and control costs.

5. INVERSE DYNAMICS PROBLEMS

There exists an entire class of control problems in which the control design procedure cannot be
reduced to minimizing a certain rigorously defined performance functional. In particular, the matter
concerns control problems with a natural global criterion reflecting, correctly and completely, the
problem content. Here, the control objective is often to maintain definite relations between certain
components of the state vector of plants. These relations usually describe the normal operation
conditions of the plant or the nature of its transients.

Recently, control design methods based on the concept of inverse dynamics problems (IDP)
have become widespread to solve such problems [13, 14]. The problem of implementing some model
reference trajectory of a controlled system was among the first research works that underlined
the development of the IDP method [15]. There are several known techniques and methods for
solving control problems based on this method [16-18]. As was demonstrated in [18], the structural
properties of control algorithms for linear systems are completely identical to those of the algorithms
obtained by the classical analytical design theory with quadratic performance functionals.

Consider the IDP method to determine whether it meets the requirements for control design
methods in guidance problems [26].

Let the mathematical model of a controlled observable dynamic system be described by a dif-
ferential operator

Xint (t) = f(Xint (¢), u(t), a(t), sint (t), 1), (5.1)
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where Xint (t) = [Tint1 (£), - - - xinm(t)]T denotes the n-dimensional state vector of the system;
a(t) = [ai(t),. p(t)]T is the p-dimensional vector of parameters;
u(t) = [ui(t),... ,uT(t)]T stands for the r-dimensional vector of control functions;
Sint (t) = [Sint1(£), - - - ,smm(t)]T is the n-dimensional vector of controlled exogenous distur-

bances representing a given time-varying function from the space Ls.

By assumption, the vector function f(xin(t), u(t),a(t), sint(t),t) is continuous and differentiable
with respect to all the variables Xjut, u, a, Sint.

It is required to find a control law u(¢) optimizing the performance functional
1= [ L (6) Xear (1), u(t) s (6, ), (5.2)

where L(Xint (1), Xtar (t), u(t), Sint (£), t) is a scalar nonnegative function. The terminal time ¢ (control
termination) can be given or arbitrary. The coordinates Xin(t) and Xiar(t) must satisfy some
hypersurface constraints [16]:

C(Xintaxtar) = O (53)

If the relation (5.3) fails as the result of disturbances or nonzero initial conditions, the controlled
object, due to its inertia, will tend to this hypersurface according to the expression
tl;m C(Xint, Xtar) = 0. (5.4)
In formulas (5.3) and (5.4), the function C(Xint, Xtar) is an r-dimensional vector function with
a continuous derivative with respect to its arguments and oo indicates the transient time of the
plant.

In the general case, the law of vanishing of the function C(Xint,Xtar) in (5.4) can be considered
the solution of the equation

'lpl {)\27 C(Xinta Xtar)a C(Xinta Xtar)a ceey C(k) (Xinta Xtar)} = 1.02 {/37 C(Xinta Xtar)} 5 1= la—k) (55)

where \; and (3 are arbitrary constant numbers making the solution of (5.5) stable; i corresponds
to the number of the constant coefficient specifying the weight of the kth derivative of the con-
straint (5.3) or (5.4); finally, 11 [e] and 12[e] are r-dimensional (generally nonlinear) vector func-
tions. However, in many engineering applications, the functions ;[e] and s[e] in equation (5.5)
can be described by the relations

¢1 ['] - C(k) (Xin‘m Xtar) + )\k—lc(k_l) (xinta xtar) +...+ Alc(xinta xtar)7

(5.6)
¢2 [’] — BOC(Xinta Xtar) or ¢2[‘] = /BOC(Xinta Xtar) + /3203(Xint> Xtar)'

The coordinates of the n-dimensional vector X, (¢) by their physical nature either coincide with
the vector Xint (t) or represent some combination of its components.

The control u(t) must be defined as a function of the state coordinates of system (5.1) and the
coordinates of the desired trajectory. The interception problem can be represented as the collection
of two motions in the horizontal and vertical planes. Therefore, we consider the application of the
control design method in a single plane under a single (scalar) control signal.

Scalar control action

The exogenous disturbance sin (¢) in (5.1) is a given time-varying function, and all its components
are controlled.
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Consider the case when system (5.1) can be written as the system of linear equations
x(t) = Fx(t) + Bu(t) + sint (1), (5.7)

where F = || ;]| is a square matrix of dimensions n x n with known elements; B is the column
vector of control coefficients in each system equation; the exogenous disturbance sin(t) is a given
time-varying function, and all its components are controlled; finally, u() is the scalar control action.

Note that the number of controlled coordinates of the vector x(t) in the steady-state mode
(hence, the dimension of the vector C(Xint,Xtar)) is determined by the dimension of the control
vector. Then, without loss of generality, system (5.7) can be supposed equivalent to the scalar
differential equation

mtl + Z ;r 1nt1 ) = Z bju(j) (t) + Z KiSint1 (t)a (58)
j=0 =0

where x1(t) is the output coordinate of system (5.7); k; is the weight of the disturbances siy;.
For the sake of definiteness, let the function C(Xjut, Xtar) have the form

C(xinta xtar) = xintl(t) — Ttarl (t) (59)

The solution of this problem will be found from the condition that C(Xjyt, Xtar) vanishes accord-
ing to some law:
lim C(Xint, Xtar) = 0.
t—o0

Moreover, the law C(Xjnt, Xtar) can be defined by any differential operator, e.g., (5.6):
C(n) (Xinta Xtar) + Ap—1 X C(n_l) (Xinta Xtar) +...+ )\0 X C(Xinta Xtar) = 0> (510)

where A\;, j =0,1,...,n — 1, are any positive numbers making system (5.6) stable.
Substituting (5.8) into (5.10) yields the following rth-order differential equation for u(¢):

byu™ () + by uTTY(E) + ..+ bou(t) = 2(2), (5.11)

where 2(t) = Y15 @i (6) = Y570 A (@ins — Trars) + 2 () — Sig ks (8).
The most interesting case is when the components of the vector B in equation (5.7) equal zero,
except the last one. Then the control action satisfying (5.11) is given by

n—1
-1 (4)
I:_ Z )‘jxirjltl + Z QT 1nt1 + Z Aj xtarl ]
=0

(5.12)
~by! [Z Fising(t) — i (£)
(=0

In this expression, A, = 1.

Consider in detail the peculiarities of the controlled process under the control action given by
equation (5.11) or (5.12). Let the parameters o, j=0,1,...,n—1, and b;, i =0,1,...,7, of
system (5.7) be known exactly; then the controlled process satisfies the equation

mtl + Z Aj xmtl - )\Oxmtl + Z Aj xtarl (513)
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In matrix form, it can be written as
Xint (t) = A)\X(t) + B Xtar (t) (5.14)

Due to (5.13) and (5.14), the properties of the controlled process are uniquely determined by the
coefficients \; regardless of the properties of the original system. The reason is that A represents
a Frobenius matrix with the last row defined by the coefficients A;, j =0,1,...,n — 1.

The unknown coefficients A;, j = 0,1,...,n — 1, are obtained from the necessary conditions for
the optimality of the performance functional (5.2).

Note in conclusion that the control u(t) designed by this method is a function of the state
coordinates Xj,; and X¢,, and the parameters A;, j = 0,1,...,n — 1. In addition, for the nonlinear
system, the mathematical model of the controlled process is also described by equation (5.14), i.e.,
the equation of the desired process.

The analysis of this control design method as applied to HSA interception shows the following:

— First, it allows assessing the possibility of forming control laws for both fixed and current
guidance time.

— Second, the IDP method allows designing both linear and nonlinear laws by using different func-
tions: o[e] = BoC(Xint, Xtar) for linear control and s8] = BoC(Xint, Xtar) + F2C> (Xint, Xtar)
for linear cubic control. As a result, the carrier is withdrawn from stability loss bounds.

— Third, the control laws can be either time-invariant or time-varying, which is determined by
the mathematical models (5.1)—(5.7) and the type of target maneuvering, stemming from the
control laws (5.11) and (5.12).

— Fourth, in view of (5.14), the closed-loop control system has the required properties regardless
of the control law: it is described by a linear differential equation and provides the achievable
requirements for stability, overshoot, and robustness to a priori errors of no more than 30%.

The method implements target interception in a given fixed time if the interception trajectory
is represented as a straight line and an arc with a known radius.

In addition, the control laws designed by the IDP method require reasonable computational
resources for their real-time implementation.

6. ANALYSIS OF CAPABILITIES TO OPTIMIZE THE INFORMATION SUPPORT
OF GUIDANCE METHODS

Information support, which reduces estimating the relative and absolute motion coordinates
of the target and interceptor motion in guidance methods, is a prerequisite of their implementa-
tion [26]. According to the review of guidance methods (2, 4, 27], it is generally required to obtain
the following estimates in each control plane: range, approach speed, target’s relative bearing,
target’s LoS angle rate, and its derivatives.

The necessary conditions determining the capability of forming these estimates are given by
the observability criterion [2, 3] based on the relationships between the original state models (2.1),
(2.2), and (2.3). As applied to linear systems, this criterion has the form

rank |HT |[FTHT (FT)QHT ...‘(FT)N_lHT — N =2n, (6.1)

where F is the dynamic matrix of the generalized state vector used in (2.3).

The physical meaning of (6.1) is that IV independent equations with N unknowns can be obtained
based on (2.1), (2.2), and (2.3) to relate the measurements to the estimates uniquely.
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In the applied sense, along with establishing the very capability of designing filtering algorithms,
the criterion (6.1) allows determining the set of measurement sensors to estimate the state vector.
In addition, due to (6.1), the zero derivatives of the state vector should at least be measured to
solve this problem [4]. As applied to the guidance problem, the range and relative bearing of the
target should at least be measured.

Note that different state coordinates contribute differently to the guidance errors. As demon-
strated by the studies [2, 28], the estimation errors of angular coordinates affect the homing accuracy
by an order of magnitude or more than the estimation errors of the range and its derivatives.

Various approaches to selecting the information support optimization procedure are possible,
depending on the antenna system.

The first approach is based on adaptive analog-discrete filtering algorithms.
The second involves multistage filtering.

The third one is to transform input signals in order to optimize the use of a given mechanically
controlled antenna actuator.

The fourth approach is based on tracking systems with a nonlinear dependence on tracking errors
that optimizes them by the minimum of a local quadratic-biquadratic performance functional. For
details, see Section 4.

The theoretical foundations of these approaches, as well as particular estimation algorithms and
research results concerning their effectiveness, were discussed in detail in [3, 4, 28].

There exist three reasons for using analog-discrete filtering:

— the necessity to generate a trajectory control signal for the interceptor continuously;

— the discrete and non-simultaneous arrival of measurements generated by sensors of various
physical nature (e.g., radars and airborne signal systems) at the estimation algorithm;

— the unavailability of the state models reflecting adequately the complex spatial maneuvers of
HSA, which predetermines the divergence of traditional Kalman filters and the necessity to
apply different adaptation schemes.

Analog-discrete filtering includes extrapolation carried out with a small step 7, approaching the
analog prediction by accuracy and providing a continuous control signal formation mode of the
carrier, and correction carried out with a sufficiently large interval T > 7 at the arrival instants of
measurements.

In the general case, for processes described by
x(k) = ®(k,k — 1)x(k — 1) + &, (k — 1) (6.2)
under available measurements

z(k) = Q- [H(k)x(k) + (k)] , (6.3)

_JE fork=nT/1,n=1,2,3,...
QZ(k)_{o for k # nT/,

adaptive analog-discrete filtering algorithms [3] yield the estimates

%(k) = Xo(k) + Ko ()Az(k),  %(0) = 0, (6.4)
Az (k) = 2(k) — Q. (k)H(K)x. (k), (6.5)
xo(k) = ®(k, k — Dx(k — 1) + ugn(k), (6.6)
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for(Az(k)) for k = nT'/7 if the adaptive correction
of the prediction results is used

usn () = 0 for k #nT/7 (6.7)
0 if the prediction results are not corrected,
Kia(k) = Qe (k)D (k)BT (k)DZ (k), (6.8)

fint (Az(k)) for k =nT /7 if the adaptive correction
of the residual gains is used

Que(k) =1 | & for k # nT/7 (6.9)

E if the residual gains are not corrected,

D(k) = { Efea{)l{fa(k)H(k)]De(k) Ei : ; Z?Z D(0) = Do, (6.10)
D.(k) = ®(k,k — 1)D(k — 1)@ (k,k — 1) + D, (k — 1). (6.11)

Here, ® is the internal connection matrix of (6.2); Q. (k) is the matrix of measurement arrival
signs; D, is the variance matrix of the state noises &, of (6.2); D, is the variance matrix of
the measurement noises &, of (6.3); D is the matrix of estimation errors; ug, is the prediction
correction determined by analyzing the residual f;,(Az(k)); Qine is the matrix of weights used
to correct the residual gain automatically by analyzing fi,;(Az(k)); finally, E denotes an identity
matrix of appropriate dimensions.

The difference between (6.3)-(6.11) and the typical Kalman algorithm lies in two features as
follows. The first is that the state extrapolation (6.6) and the computation of the covariance matrix
of the prediction errors (6.11) are carried out with a small interval 7 whereas the measurements (6.3)
and the correction of the estimates x (6.4) with a large interval T > 7. Moreover, the second feature
predetermines the possibility of using many adaptation techniques and non-simultaneously arriving
measurements.

Formulas (6.2)—(6.11) present the two most efficient methods for preventing the divergence of the
filtering algorithm (6.3), (6.4) in the case of intensively maneuvering HSA. The first method is based
on forming the adaptive prediction correction (6.7); the second one involves the correction (6.9)
of the residual gain (6.8). The preference for one of these adaptation schemes depends on the
dimension of the target motion model and the set of measurement sensors.

The procedures for calculating the corrections (6.7) and (6.9), including the case of non-simul-
taneously arriving measurements, were considered in detail in [3].

Note that in the intervals between the arrival of the measurements (6.3), the interceptor control
signal is generated based on the prediction results (6.6) for ug, = 0. During this time, the predic-
tion error is accumulated due to the mismatch between the HSA real flight and its model (6.2).
Two operations are executed when the measurements (6.3) from any sensor arrive at the instants
corresponding ton =1,2,3,....

The first operation is to calculate the adaptive corrections (6.7) of the prediction (6.6) by
changing the residual (6.5) or the correction (6.9) that tunes its weight; the calculation rules were
described in [3, 28].

The second operation is intended to generate the estimate (6.4) under the adaptation method
selected. In this case, the real estimation accuracy is somewhat worse than the potential one (6.10),
(6.11), but the estimates are stable for HSA with complex maneuvers.

In addition to the adaptive prediction correction (6.7) or the correction (6.9) of the residual gain,
discussed in [4], a rather effective filtering method is to identify the parameters ®(k,k — 1) (6.2)
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The functional diagram of the three-stage filter of the fourth order.

of the original state model. However, while providing an efficient adaptation of the model to the
application conditions, this method has significantly higher computational costs [28].

Estimating the range, approach speed, and its derivatives from the independent measurements
of range (the delay time of reflected signals) and speed (the Doppler frequency) is not difficult.
At the same time, a rather complex problem is to estimate relative bearing, LoS angle rate, and
its derivatives from the measurements of angles only.

Here, one of the simplest solutions is multistage filtering [4]. The measurements are supplied to
the input of a multistage filter. It represents a set of serially connected filters of ascending dimension
(n > 2) in which a current filter generates estimates used in the next filter as measurements. As a
result, the number of feedback loops increases, thereby improving the stability and accuracy of the
derivatives estimates.

The operation principles of this method are explained on the example of a three-stage filter of
the fourth order and one measurement sensor. Its functional diagram is presented in the figure
with the following notations: F1 is the filter’s first stage, which forms the estimates Z1; and 1o
from the measurement z; and passes them to the second stage as measurements; F2 is the filter’s
second stage, which forms the estimates Zo1, 99, and Zo3 and passes them to the third stage as
measurements; F3 is the filter’s third stage, which forms the estimates %31, 232, £33, and T34 and
passes them to the user.

The effectiveness of the multistage filtering method was validated in [4], where the angle and
its derivatives up to the fourth order were stably estimated as an illustrative example with a single
measurement sensor.

7. CONCLUSIONS

The material presented in this paper leads to the following findings.

The requirements for ways to optimize guidance methods to HSA [26], including the need to
design time-varying control laws in a given area of application conditions under current constraints
and implementability conditions, and the results of previous studies have been considered as a basis
to assess the capabilities of various optimization methods for designing interceptor’s control laws.

In particular, the following approaches have been assessed:

e the classical optimal control theory in the Letov—Kalman formulation;

local optimization methods, including those with real and virtual disturbances;

local optimization by quadratic-biquadratic performance functionals;
e the concept of inverse dynamics problems;

e ways to provide the information support of guidance methods designed.

According to the comparative analysis results, the local optimization method by the minimum of
quadratic-biquadratic performance functionals and the method based on inverse dynamics problems
have the best capabilities according to the set of requirements.
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In future papers, we will assess the capabilities of gradient-based optimization and the so-called

intelligent control methods.

In addition, examples of designing particular guidance methods within the most appropriate

optimization approaches will be presented.

In conclusion, an important aspect should be emphasized. When several optimization methods

are used, the problem of a qualified choice of the best result arises inevitably. In the simplest case,
this choice is made by comparing performance and survivability indicators. The so-called foresight
concept [29] can be adopted for a more justified choice. This concept allows automating the choice of
the best alternative based on many heterogeneous tactical, economic, and technological attributes.
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Abstract—The article is devoted to the development of a digital control system for the unstable
vertical plasma position in the KTM tokamak. A controller with fixed parameters was synthe-
sized using an array of plant models. The synthesized controller ensures the desired control
performance and robust stability margins simultaneously for two plant models with varying
parameters. A robust stability analysis was carried out. The performance of the system was
verified through hardware-in-the-loop (HIL) simulation using a complete nonlinear model of
the voltage inverter, taking into account its maximum current and voltage limitations.
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1. INTRODUCTION

Control systems for the vertical plasma position are critically important for the operation of mod-
ern D-shaped tokamaks, where the plasma is elongated vertically in the poloidal cross-section [1-4].
The vertical position of the plasma in such tokamaks is inherently unstable, so a feedback control
system is employed to provide plasma discharges. The vertical plasma position is controlled via a
magnetic field generated by the current in the horizontal field coil (HFC) [5]. The vertical plasma
position control system must ensure the stability of the plasma’s vertical position and achieve the
desired scenario for the vertical plasma position throughout the discharge.

The KTM tokamak (Kazakhstan Tokamak for Material testing) [6, 7] is located in Kurchatov,
Kazakhstan. In addition to the HFC, the tokamak uses six poloidal field (PF) coils, a central
solenoid (CS) for induction of the plasma current, a toroidal field coil, and a passive stabilization
coil for the plasma position. Figure 1 shows the coil arrangement of the KTM tokamak.

The plasma in the tokamak is a non-stationary control plant; in particular, the dynamics of
the vertical plasma position can change significantly during a discharge and may vary strongly in
discharges with different scenarios. Previously, in [8], models of vertical plasma displacement were
calculated for several shots, a control system for the HFC current was synthesized, and estimates
of the controllability region for the vertical plasma position were obtained. A new HFC power
supply, implemented as a voltage inverter operating in pulse-width modulation (PWM) mode, is
planned for commissioning at the KTM tokamak. The goal of this work is to develop and perform
hardware-in-the-loop simulation of a digital control system for the vertical plasma position with
the new power supply. A static controller is synthesized to provide acceptable control quality and
the necessary robust stability margins for the closed-loop control system under two different plasma
discharge scenarios.
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Fig. 1. Cross-section of the KTM tokamak.

Hardware-in-the-loop simulation [9] is an important stage before implementing the developed
control system in experimental practice. In this method, the controller operates on real equipment
that is functionally identical to what will be used in practice. With sufficiently accurate model-
ing of the controlled plant, hardware-in-the-loop simulation can guarantee the operability of the
developed control system’s and reduces implementation costs. This work proposes a methodology
for conducting hardware-in-the-loop simulation of a cascade control system for the vertical plasma
position and presents its results under various operating modes.

The problem statement, the structural diagram of the synthesized control system, and the
description of the plasma models used are provided in Section 2. Section 3 describes the synthesis
of the cascade control system for the vertical plasma position. Section 4 presents the analysis
of the robust stability margins of the synthesized system in terms of gain and delay. Section 5
includes the results of hardware-in-the-loop simulation of the synthesized control system in normal
and extreme operating conditions, enabling the verification of results obtained in Sections 3 and 4.
The conclusion summarizes the main findings. The appendix compares the digital control system
synthesized directly on the discrete plant model with the discretized system tuned on the continuous
model, assuming the same tuning method is used for both, this is the justification for the choice of
the control system synthesis method.

2. PROBLEM STATEMENT

The structural scheme of the digital cascade control system for the vertical plasma position in
the KTM tokamak is shown in Fig. 2, where Z,.; is the reference for the vertical plasma position,
Z is the vertical plasma position, ez = Z,.y — Z is the vertical plasma position error, Igrc ref is
the reference for the HFC current, I'gpc is the HFC current, e, .. = Inrc ref — IgFc is the HFC
current error, Ugpc is the HFC voltage, and upy ps is the control signal.

The actuator in the control system is a power supply for the HFC, implemented as a voltage
inverter operating in PWM mode with the following parameters: three voltage levels [—1, 0, 1] kV;
power of 2 MW, corresponding to a maximum current of +2 kA; and a PWM frequency of 1 kHz.
The voltage inverter consists of an H-bridge and a PWM controller, which converts the control
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Gﬁ FC H-bridge
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Fig. 2. Block scheme of the digital cascade control system for plasma vertical position in KTM with a voltage
inverter in PWM mode.

Fig. 3. Schematic diagram of an H-bridge with a DC voltage source.

signal upyw s into pulse sequences vi_4 that control the H-bridge transistor gates (Fig. 3). There is
no digital-to-analog converter (DAC) in the control system; instead, the PWM controller, as part
of the digital control device, directly drives the gates of transistors via optocouplers with its digital
outputs vi_4.

The HFC comprises two sections connected in a series-opposing configuration. The voltage and
current in the HFC are related by

Linrc(t) + Rlgpe(t) = Unrc(t),

where R = 212 m(2 is the HFC resistance, and L = 17 mH is the HFC inductance. The discrete
transfer function of the HFC is
R(1 - exp(~T,R/L))

z—exp(—TsR/L)
where z is the Z-transform variable, and 75 = 1 ms is the sampling time.

Pyro(z) = Inrc(z) = Purc(2)Unrc(2), (1)

Models of vertical plasma displacement in the KTM tokamak [8] were obtained from experimen-
tal data for two of the most typical plasma shots with a plasma current of 500 kA from the last
experimental campaign [10]: shot no. 5121 with an elongation (the ratio of vertical to horizontal
plasma diameters) of 1.4 and a normal duration, and shot no. 5126 with an elongation of 1.6 and
a short plasma confinement time. These models are represented as linear state-space models with
time-varying parameters in discrete time:

z(Tsk + Ts) = A(Tsk)x(Tsk) + B(Tsk)u(Tsk)
y(Tsk) = C(Tsk)x(Tsk),

T 1T T 24x1 8x1 : .
where x = [IPF Iy, Ip} € R**** is the state vector, Ipp € R°*" is the vector of currents in

the poloidal field coils (including Igpc), Iyy € RYX! are the currents in the vacuum vessel and
passive structures, Ip is the plasma current, u = Ugpc is the input, and y = [Z I HFC]T is the
output vector.

For each vertical plasma displacement model, the set of matrices {4, B, C'} was calculated with
a sampling time of Ty = 1 ms:

(1) Model of shot no. 5121 — for 1001 time points from 2.50 to 3.50 s;

(2) Model of shot no. 5126 — for 61 time points from 2.44 to 2.50 s.
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Fig. 4. Change in the magnitude of the single unstable pole of the plasma vertical motion models during the
shot.

Both models have one unstable pole that varies significantly during the shot, as shown in Fig. 4.
For controller synthesis, an array of discrete transfer functions was computed:

Po(2) = Cp(2I — A,) By, (2)
where the index n denotes the time point for which the model matrices were calculated:
A, = A(Tsn), B, = B(Tsn), and C, = C(Tsn).

The controller must ensure that the control system has the necessary robust stability margin
to provide acceptable control quality simultaneously for both vertical plasma displacement models
with time-varying parameters. The control system must also have a sufficient phase stability margin
to maintain stability when a transport delay of up to 10 ms (10 sampling steps of 1 ms each) is
introduced into the feedback loop, which is the upper limit of possible delays in the data acquisition,

processing, and transmission system of the KTM tokamak. The delay is modeled by incorporating
a discrete transfer function 2710 into the feedback loop.

3. CASCADE CONTROL SYSTEM SYNTHESIS

The controllers in both control cascades were synthesized using the method described in [11],
which allows for the synthesis of a discrete controller based on a set of discrete plant models and
performs loop shaping of the open-loop transfer function. The synthesis is carried out using linear
matrix inequalities through a convex-concave procedure. An alternative approach is discussed in
the Appendix, where the controller is synthesized based on the continuous-time model of the plant,
and then the controller is discretized.

First, the inner current control loop for the HFC is synthesized based on the model (1). The
linear model of the voltage inverter was obtained by identifying the serial connection of the HFC
and the voltage inverter using the approach described in [12]. As a result, a PI-controller was
synthesized with the discrete transfer function

Tsz
Curc(z) = Kpype + KIHFCZ%l’ upwm(2) = Cz(2)enrc(2), (3)
where Kp, .. = 0.004 V/A and Ky, .. = 0.15 V/(A x s). The output of the controller, upw s,
is limited to the range +1 V, which is determined by the parameters of the PWM controller. The
synthesized current control system for the HFC provides the fastest possible performance subject
to the limitations of the power supply, which allows the current rise rate in the HFC to reach

Umax/L = 58.8 kA/s. This control system was used in [§] to estimate the controllability region of
the vertical plasma position.
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Fig. 5. Bode plot of the transfer functions of the plasma vertical position control system.

The synthesis of the outer control loop was performed on the set of discrete transfer functions
of the inner loop: Z(2) = Gn(2)Inrc ref(2),

Gn(2) = Pa(2)A(2)Crrc(2) (I + Pa(2)A(2)Crre(2)) o (4)

where A(z) = Unmaxz~ FPwat/Ts jg the linear model of the voltage inverter, Upax = 1 kV, Tpwm/Ts =1,
and n is the index from (2). Thus, one controller will meet the given quality and robust stability
criteria simultaneously for both models with variable parameters. As a result, a PID-controller was
synthesized with the discrete transfer function

& + Kp, %7 Inrc Tef(z) = OIHFC(Z)eZ(Z)7 (5)
S

where Kp, =245.3276 A/m, K1, =3.831 kA/(mxs), Kp, =0.366 (Axs)/m. The output Iypc ref

of the controller, is limited to the range +2 kA.

The Anti-Windup approach [13] was implemented during the synthesis of the controller to
prevent saturation of the controller’s output signal and the subsequent internal instability in the
control system. In both controllers, a clamping mechanism is used, whereby integration is stopped
when the signal at the controller output is outside the set range, and the output and input of the
integrator have the same sign.

Figure 5 shows the results of controller synthesis using the method from [11], including the
specified shaping functions and singular values of the discrete transfer functions of the synthe-
sized system with models for the time points [3.229;3.299; 3.449] s from shot model no. 5121 and
[2.479;2.489;2.5] s from shot model no. 5126.

The open-loop transfer function array is given by

Ln(2) = Gu(2)C2(2),  Z(2) = Lu(2)ez(2), (6)

CZ(Z):KPZ+KIZZ_1
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where Gy, (2) is the array of inner loop transfer functions from (4), and Cz(z) is the transfer function
of the controller (5). The sensitivity function array is given by

Sul2) = (I+La() " e2(2) = Su(2) Zres (o),
the array of complementary sensitivity functions is
Ta(2) = Ln(2)Sn(2),  Z(2) = Sn(2)Zres(2),
the array of static and low-frequency sensitivity functions is
Fu(2) = (Gu(DE1, 1) (2= 1), for small w, = = exp(juTh),
the array of Q-parameters is
Qn(2) = Cz(2)Sn(2),  InFc ref(2) = Qn(2)Zres(2)

and the array of transfer functions from external input disturbance to ez(z) is

Whi(z) = —Sn(2)Gn(z).
The specified shaping functions bg and by limit the arrays of transfer functions Sy, (z) and T},(z) over

the entire frequency range, ensuring the required robustness and quality margins for the closed-loop
control system.

4. ROBUST STABILITY ANALYSIS OF THE PLASMA POSITION CONTROL CASCADE

To calculate the robust stability margins of the closed-loop system, the open-loop transfer func-
tion array (6) was used. Figure 6 shows the gain margins, and Fig. 7 shows the delay margins.

(a) Shot no. 5121 (b) Shot no. 5126
20 ' 20F i '
g -
=l g Or
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Fig. 6. Gain margin of the linear closed-loop control system.
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Fig. 7. Delay margin of the linear closed-loop control system.
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Fig. 8. Robust stability diagram of the nonlinear control system.

The delay margin T); was calculated using the formula [14]:

_Pu T
M, 1807

where ¢,/ is the phase margin, and w, is the gain crossover frequency (the frequency at which the
open-loop gain first reaches the value 1). In the worst-case scenario, which occurs at the end of
both shots, the synthesized control system has a satisfactory gain margin of 10 dB (Fig. 6). The
delay margin (Fig. 7) also exceeds the required 10 ms throughout both shots.

Figure 8 shows the stability diagrams of the nonlinear control system with the full model of the
voltage inverter and the plasma vertical displacement model with variable parameters.
No. 1 2025
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The delay and gain in the plasma vertical position feedback loop were varied. The nonlinear
system has a limited controllability region, so the larger the reference input Z,.r, the smaller its
robustness margins. Green indicates situations where the system is asymptotically stable, red
indicates instability, and yellow shows the robustness margins of the linear model in the worst-case
scenario (Figs. 6 and 7).

5. HARDWARE-IN-THE-LOOP SIMULATION

Hardware-in-the-loop simulation of the digital control system was conducted on the real-time test
bed [15] at the Trapeznikov Institute of Control Sciences of RAS on two real-time target machines
(RTTM). The structural scheme of the control system for hardware-in-the-loop simulation is shown
in Fig. 9.

_ """ I 2 S RTTM "Plant model" '

C UPW M H-bridge | Uy pe
HFC model

.............................................................................................................

]HFC' ref

Fig. 9. Block diagram of the digital cascade control system for plasma vertical position in KTM during
Hardware-in-the-loop simulation.

The digital controller is implemented on the RT'TM “Controller,” where, in addition to the
controllers of both cascades, there is a PWM controller. This approach eliminates the need for using
a DAC, which enhances the system’s reliability and performance since the control signal upyy s is
not converted to analog. It is not necessary to spend time converting the signal to the DAC, also
there is no need to ensure electromagnetic compatibility in the transmission line for the analog
signal upy s, and the cost of implementing the PWM controller in analog form is reduced

On the RTTM “Plant model” is the model of vertical plasma displacement and the H-bridge
model with a constant voltage source implemented in Simscape Electrical. The sampling time for
the controllers is 1 ms, while the sampling time for the PWM controller, the H-bridge, and the
vertical plasma displacement model is 100 ps. The sampling times differ by a factor of 10 to allow
the PWM duty cycle to be 10%. If the control system implementation requires even smaller PWM
duty cycle, the PWM controller can be implemented on an FPGA.

The concept of hardware-in-the-loop simulation of control systems assumes that part of the
system is real, while the other part is represented by a model. In this case, all components of
the controller are implemented on the RTTM “Controller.” To make the controller functionally
analogous to the one that will be used in the real control system (Fig. 2), there are two DACs at
the output of the RT'TM “Plant model.”

5.1. Control System Simulation in Normal Operating Conditions

The results of hardware-in-the-loop simulation of the synthesized system in normal operating
condition with a reference for the vertical plasma position of 5 cm are shown in Fig. 10. In addition
to the transient process of the vertical plasma position and electrical signals from the power supply
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(a) Shot no. 5121 model (b) Shot no. 5126 model
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Fig. 10. Simulation of the plasma vertical position control system in KTM. The reference displacement is
Zrey = 5 cm.

(voltage, current, and power), the change in the unstable pole of the model for each shot is shown.
The synthesized controller provides acceptable control quality for both vertical plasma displacement
models. The required power of the voltage inverter does not exceed 1.2 MW, with a maximum
possible power of 2 MW.

5.2. Control System Simulation in FExtreme Operating Conditions

Figure 11 shows the results of hardware-in-the-loop simulation with the maximum vertical
plasma displacement, at which the closed-loop system remains stable and provides acceptable con-
trol quality, and Fig. 12 shows the results for the maximum possible delay in the feedback loop for
vertical plasma displacement. A plasma displacement of more than 10 cm vertically in the toka-
mak KTM is not required in practice, as this would cause the plasma separatrix to collide with the
tokamak limiter. Therefore, the synthesized control system allows the control of vertical plasma
position in the KTM tokamak over the entire possible range. In both cases, the delay exceeds the
required 10 ms.

In [8], the upper bound of the vertical plasma position controllability region was calculated. For
shot no. 5121 it is 23 cm, and for shot no. 5126 it is 26 cm. The actual controllability region for
shot no. 5121 is 4 cm larger than the previously estimated value, which is explained by the fact
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(a) Shot no. 5121 model, Z,.y = 27 cm (b) Shot no. 5126 model, Z,.;y = 22 cm
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Fig. 11. Simulation of the plasma vertical position control system in KTM. The reference displacement is
Zref =5 cm.

that [8] used a model for one time point of the shot with the highest value of the unstable pole,
which is not at the end of the shot, and any potential instability does not have time to develop.
This also explains why the maximum delay of 14 ms (Fig. 12a) exceeds the minimum delay margin
(Fig. 7a).

6. CONCLUSION

The operability of the control system has been demonstrated through hardware-in-the-loop
simulation on two models of vertical plasma displacement, calculated based on experimental data
from discharges with different scenarios. The full model of the voltage inverter in PWM mode,
accounting for power limitations, was used in the simulation. With sufficient verification of the
models used, the hardware-in-the-loop simulation guarantees the functionality of the control system
when implemented in practical experiments.

The maximum possible vertical plasma displacement in the synthesized system with a voltage
inverter in PWM mode is 27 cm for shot model no. 5121 and 22 c¢cm for shot model no. 5126, which
exceeds the actual required range of 10 cm. The maximum possible transport delay in the feedback
loop for vertical plasma position, at which stability and acceptable control quality are maintained,
is 14 ms for shot model no. 5121 and 23 ms for shot model no. 5126, which also exceeds the required
value of 10 ms.

This work used a robust approach, where one controller is synthesized to meet the control
quality and robust stability margin criteria simultaneously for multiple models of vertical plasma
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Fig. 12. Simulation of the plasma vertical position control system in KTM with the maximum possible delay
in the feedback loop.

displacement. An alternative adaptive approach is possible, where the controller is tuned for a
specific scenario or its parameters change during the discharge. The adaptive approach allows for
better control quality since, in the case of the robust approach, the control quality is limited by
the “worst-case” plant model. In this task, the robust approach is preferred over the adaptive one,
as it does not require retuning the controller when the plasma discharge scenario changes.
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APPENDIX

COMPARISON OF THE DIGITAL CONTROL SYSTEM
WITH DISCRETIZED ANALOG CONTROL SYSTEM

The synthesis method [11] allows for the synthesis of both discrete and continuous control
systems. A common approach is to apply a discretized controller in a digital control system. For
example, in [16-19], continuous controllers were synthesized for plasma control in a tokamak. To
demonstrate the drawbacks of this approach, the following comparison is made.
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Fig. 13. Bode plot of the transfer functions of the analog and discretized plasma vertical position control
system.

Figure 13a shows the result of synthesizing a continuous controller on the plant model in contin-
uous time with the same shaping functions that were used for synthesizing the discrete controller
in Section 3. The shaping functions in the synthesis method [11] define the control quality and the
robustness margins of the closed-loop system, so the synthesized analog control system has approx-
imately the same control quality and robustness margins as the digital system obtained earlier in
Section 3.

The synthesized analog PID controller is given by the transfer function

A A .1 A S
CZ(S) = KPZ + KIZ; + KDZ 7‘8——1—1’

where Kp, = 266.9 A/m, K, =10.3 kA/(mxs), Kp, = 0.53 (Axs)/m, 7 =100 us, s — Laplace
transform variable. After discretizing this controller using the ZOH method, the frequency response
of the transfer functions of the discretized system was computed (Fig. 13b). The discretized control
system is unstable.

In [20], it is shown that discretization may have little effect on the degradation of control quality
and robustness margins, provided the closed-loop bandwidth is at least 30 times smaller than the
sampling frequency. The closed-loop bandwidth of the control system varies depending on the shot
time from 10 to 79 Hz, which means that the sampling time 75 = 1 ms is almost 2.5 times larger
than needed to preserve control quality during discretization. Moreover, the plant model is not
minimum-phase since it contains delay elements, which also contributes to the loss of stability of
the control system during discretization.
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Abstract—We consider a target control problem of a special form, in which a system of differ-
ential equations includes nonlinear terms depending on state variables. We show that reinforce-
ment learning algorithms such as Proximal Policy Optimization (PPO) can be used to find an
inexact feedback solution. The chosen strategy is further approximated with a piecewise affine
control. Based on the dynamic programming method, an inner estimate of the solvability set is
calculated, as well as a corresponding a priori estimate of the distance between a final trajectory
point and the target set. To do this, we examine an auxiliary problem for a piecewise linear
system with noise and calculate a piecewise quadratic function as an approximate solution of
the Hamilton—-Jacobi-Bellman equation.
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1. INTRODUCTION

We consider a target control problem for a nonlinear system of differential equations on a fixed
finite time interval. This problem is closely related to construction of the solvability set containing
all starting positions from which the control synthesis problem can be solved. To approximate this
set, one may use various methods based on analysis of the corresponding differential inclusion [1-3]
or depending on the Hamilton—Jacobi-Bellman (HJB) equation [4-7]. These approaches are appli-
cable to a wide class of nonlinear systems, yet they require large computational costs. Recently,
algorithms based on machine learning have also been developed, making it possible to approximate
solution of the HJB equation with a neural network [8, 9] or to search for the control function
directly [10]. However, the latter do not provide any guaranteed estimates.

This paper proposes to reduce computational complexity of solving the HJB equation by search-
ing for an approximate solution in the class of piecewise quadratic functions defined on a set of
simplices. We develop the ideas introduced in [11-13] and present a method based on piecewise
linearization of the right-hand side of differential equations, considering an auxiliary control prob-
lem for a system with piecewise linear dynamics and bounded noise (linearization error). The
comparison principle [14, 15] allows us to derive equations for the coefficients of the sought-for
value function, whose zero sublevel set is an internal estimate of the solvability set of the original
nonlinear system.

The search for an approximate HJB solution using the above-mentioned method is accompanied
by construction of a suboptimal control strategy. Previously, a control strategy was proposed in the
form of continuous piecewise affine function [13], determined by values at the vertices of the partition
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simplices. In this case, the values at the vertices should be chosen in such a way as to minimize
the derivative of the value function along the trajectory. However, since the constructed estimate
of the value function is not smooth, it is required to use additional heuristics, which increase the
error of the method. In this paper, we demonstrate that results of other algorithms can also be
used as controls at the vertices. In particular, we propose using reinforcement learning [16, 17]. If
control values are chosen based on the output of a neural network model, the resulting estimate of
the value function can take smaller values at the initial time moment. Therefore, it would a priori
guarantee reaching a smaller neighborhood of the target set.

Note that reinforcement learning algorithms also imply construction of a value function, which
is an estimate of the resulting benefit from each possible position (in this case, we are talking about
the distance to the target set at the final moment of time), or its analogues. But even with a
well-chosen control, such an estimate is not reliable and may be inaccurate. At the same time, the
approach indicated in this paper allows any predetermined control strategy to be approximated
by a piecewise affine function, for which the resulting estimate will be guaranteed. This can be
especially useful in case of additional interference, when calculation of trajectories for different
initial points is not sufficient to estimate all possible variants of the system’s behavior.

2. PROBLEM STATEMENT

We consider a system of nonlinear differential equations
t=1f(t,x) +gt,z)u, tE [to,t1], v €, (1)

where Q € R™ is a compact set, large enough to contain all the trajectories of (1) for any ¢ € [to, t1];
we assume that the boundary of 2 is a polyhedron. The nonlinear vector function f(¢,z) and the
matrix function g(¢,x) € R™*™ are continuous in ¢ and twice continuously differentiable with
respect to z. The interval [tg,t1] is fixed. At every moment of time, the control vector u must
belong to a compact convex set P:

u€P CR"™. (2)

The main problem is to construct a continuous feedback control in the form u = u(t, x), which
steers the system (1) from a given point z( at time ¢y to the smallest possible neighborhood of a
compact target set X3 C Q at time ¢;. Let u(-) denote feedback control. Thus,

z(t15t0, 70)|u(y € X1 + Be(0)

must hold, where z(t1;%0,0)ly(.) is the final point of a trajectory that started at time ¢ from the
point xg, closed by control u(-); B:(0) is a ball of radius e centered at zero, and the value of € > 0
must be minimized. We also assume that the target set is representable as X3 = {x € Q: ¢, (z) <0},
where ¢x, (x) is a twice differentiable function.

In addition, it is required to construct the solvability set W(t,t1,X1) [15], that is, the set of all
vectors = € (O, for each of which there is a control u(-), satisfying the constraint (2) and transferring
the system from position {t,z} (t € [to,t1]) to the target set: x(t1;¢,2)|,.) € A1. However, since
the task of constructing the exact solvability set is difficult, we limit ourselves to searching for
internal estimates of this set.

3. SYSTEM WITH PIECEWISE LINEAR DYNAMICS

Let n-dimensional simplex [20] with vertices x1,z2,...,Zn+1 € R™ be the set
n+1

SN — {alxl +aoro+ .. F 1Tt 2 0, Z o = 1} ,
i=1
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where the vectors x9 — 21, ..., 2n+1 — 1 are linearly independent. In this case, a vector of barycen-
tric coordinates a(z) = (ay,...,a,s1)T uniquely defines the position of any point z inside the
simplex. In addition, there is a matrix H [11] such that the barycentric coordinates a(z) are
linearly expressed in terms of z: a = H x (z7,1)T.

Consider some partition of the € set into N simplices Q%) such that any two simplices do
not intersect or intersect only along any of their common faces of dimension smaller than n,. In
practice, having an arbitrary set of vertices, one may implement such partition using Delaunay
triangulation [21, 22], which is efficiently computed by constructing a convex hull of points in
(n; + 1)-dimensional space [23].

The superscript (i) further denotes correspondence of a vector, matrix, or function to the sim-
plex Q@ . In particular, vertices of a simplex are denoted as ggi), e 97(12 L1 ERM 0= 1,N. Note
that each vertex can belong to several simplices.

In [11-13], a method was proposed to construct a continuous piecewise affine approximation of
the system (1), which substantially uses a partition of the €2 set into simplices. The matrices A,
B and vectors f() are selected in such a way that the following representation is valid for all
u € P:

£(t,2) + g(t, 2)u = AD )z + BO()u + fO () + vV (¢, 2,u), =€ Q) (3)

where v is a local linearization error. This error is bounded and there is an estimate for it based
on decomposition of the functions f(¢,z) and g(¢,x) according to the Taylor’s formula. Moreover,
this estimate is independent of particular values z € Q) and u € P. Thus, all possible values of v(®
can be bounded with some ellipsoid Q) (¢):

Q1) = £(0.QV() = (e R @ @) <1} Q=@ >0 @

Remark 1. If system (1) additionally contains an additive term in the form of unknown bounded
function (interference), then it can also be taken into account during piecewise linearization by
scaling the ellipsoids Q) (t) and shifting their centers.

It is convenient to consider the extended variable space, where a vector z is obtained by adding
an auxiliary component with a fixed value equal to one: # = (27,1)”. Then, based on (3), we
can write the following piecewise linear system of differential equations with autonomous switch-
ing [24, pp. 5-9] in the extended space of variables:

i =AWz +BOtu+Co, zeQ® x {1}, t € [to, t1], (5)
. AD @) O . BO(t) ~ I
AD () = , BY@t) = , C=|Joxna)

( ) [@1Xnm 0 ( ) @1><nu @1><nm

where v is interpreted as interference. We will call an interference acceptable if it is a measurable
function of time and it satisfies the constraint v()(t) € QU (t) at each time moment. The index
i =1i(x(t)) in formula (5) is a function of system state at time ¢, however, for the sake of brevity,
we omit the arguments of this function.

4. VALUE FUNCTION
4.1. General Background

Consider an auxiliary value function

V{tz) = min{gx (2(tr) : 2(t) = =}, (6)
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where x(-) is a trajectory of the nonlinear system (1), starting at the initial position and closed by
a fixed feedback control u(-). Using the value function, the solvability set is constructed [15] as

Wt t1,X1) ={zeQ: V(t,x) <0}. (7)
Along with (7), consider a formula for the neighborhood of the solvability set:
We(t,t1, 1) ={z € Q: V(t,z) <&},
Welt,tr, &) = {z € Q| Ful) : ox (@it @)lug)) <cf -

At any point of differentiability (¢, ), where ¢t < t1, x € Q, the function V (¢, z) satisfies the
backward Hamilton—Jacobi—Bellman equation

min V'(t, ; (1, (£(t, 2) + g(t, z)u)")T) =0, (8)
where V' (t, z; ¢) is the derivative of the function V (¢, z) at the point (¢, z) in the direction ¢ € R+,
At the final moment of time, the equality V(t1,2) = ¢x, (z) holds. The function V(t,z) can be
non-differentiable, and hence the solution of (8) must be recognized in a generalized sense [25].
Nevertheless, we can replace the solution V(t,z) with such a piecewise quadratic function that
equation (8) would be fulfilled approximately. This function will be further found based on consid-
eration of piecewise linear system (5).

4.2. Piecewise Quadratic Function

At each vertex gl(i) of each simplex Q) consider a function (kl(l) (t),Z), which is affine in z.

For each t € [tg,t1], the vector k:l(i) € Rl is a vector of unknown coefficients. Then, for each

simplex Q) we can define a matrix of parameters, whose structure corresponds to the set of
(4) (4)

vertices gy, ..., Gp 11"
KO(t) = [k‘gz)(t), . .,kgzﬂ(t)] € R(a+1)x(na+1)
Consider a piecewise quadratic function

(@ (t, &) = (i,K(i) (t)ga)@, 7= (xT’ 1)T’ e 9)

Equation (9) corresponds to interpolation of the considered affine functions:

VOt z) = (& KDt HD L)
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Since the function (9) is defined for the extended space of variables & = (27,1)7, an arbitrary
piecewise quadratic function defined on a set of simplices can be represented in such form.

We will use piecewise affine controls of the form

ng+1 )
u(t,z) = YO HDE = Y ol @)yl (t) e R™, (10)
k=1

where the matrix Y (®)(t) € R?*("+1) consists of column vectors y,&i) (t) € P that are the control
values at the vertices of Q). Those values will be chosen later. Note that the values of y,&z) (t) cor-
responding to the same vertex in different simplices will coincide, hence the control function u(t, x)

is continuous in x. Due to convexity of P, the condition u(t,x) € P is satisfied.
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Consider the derivative of V) (¢, %) in the direction £ = (¢;,,) € R"%12:

dv (@)
de

=07, KOHDE) + (0, [KOHD 4 (HNT(KO)T)7). (11)
It was proved in [13] that the following estimate holds for ¢ = (64,0,)T, where £, =1, £, =
AWz 4+ BOy 4 Cou:

dv
de

(t,2) < (%, [KD + ZO1HO §). (12)

The matrix Z® is known and can be expressed in terms of coefficients K (t), coefficients A® (¢),
BO(t), C of the piecewise linear system (5), and matrices Y ()(¢) that define control values at the
vertices of Q). The obtained estimate is valid for any acceptable interference v € Q¥ (t).

Making K@ + Z(@ to be zero matrix, we obtain the system of matrix differential equations
which describes evolution of V¥ (t, %) over time.

KO+ 20(t) =0, telto.ti], i =T,N. (13)

Then it follows from (12)-(13) that along any trajectory of the system (5) the derivative of the
function will not increase in each simplex Q). Next, we will show how to modify equations (13)
so that the resulting function V) (¢, %) would be continuous, and therefore the derivative would
not grow even when passing through the simplex boundaries. This can be used to construct a
guaranteed a priori estimate for trajectory’s end point deviation from the target set.

4.3. Boundary Conditions

To solve (13), one has to set boundary conditions at the final time moment ¢ =¢;. In turn,
it is necessary to construct a piecewise quadratic upper bound for the function ¢y,. Based on
representation (9), matrices K () (¢;) can be defined. In particular, if the boundary of the set X}
is a second-order hypersurface, then the representation ¢, (z) = (Z, KZ) is valid for some matrix
K = K7T. Thus, let the parameter values of V() (t1,%) be equal to

KO () = K x (D) (14)

in each simplex. In general, for any twice differentiable function ¢x,, it is possible to construct a
piecewise affine upper bound [12], which is a special case of piecewise quadratic function and thus
leads to conditions similar to (14). The function V® (¢, #) will be continuous in x over the entire
set  x {1} at time ¢t = ¢;.

4.4. Function Smoothing

Note that solution V@ (¢,z) (9) of the Cauchy problem (13)-(14) can be discontinuous at the
boundaries of simplices. Each column of K (t) defines the coefficients of the piecewise affine
function (k:l(z) (t),Z) at some vertex g;. However, generally speaking, each such point is a vertex
of several simplices at once. Since matrices Z) in (11) are constructed independently for each
simplex, the values of the derivatives k:l(z) (t) are determined by several incompatible conditions.

Thus, the estimate (11) needs to be modified, so that the resulting function V) (¢, z) would be

continuous. We propose an alternative way to calculate the matrices Z(¥) rather than in [13].
Instead of (13), consider a differential equation for each column of the matrix K®:

) +20(t) =0, teltot], i=TN, I=Tng ¥ 1, (15)
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(4)

where 2, is the corresponding column of the matrix Z (). Hence the estimate (12) can be rewritten
in the form

(@) . e NN N
d; (t,z) < (& [KD + ZzOADz) = (2, KOVADE) + (8, 20 AV z)
Nng+1 )
< (@ KVAOz) + (7, 2000(2)) = (7, KOAOz) + Y o (2)(3, 2"). (16)
=1

(%)

For any fixed ¢ € [to,?1] and each vertex g,”, consider an auxiliary linear programming problem

(%)

with respect to a new unknown vector 2, :

(0,
&

)
where v(i,1, j) denotes a local index of a vertex gl(i) e QW N QU in the simplex QU).
Using solutions él(i), we obtain matrices Z(® in a similar way. Given conditions of the prob-
lem (17) and linearity of the functions under consideration, we can continue the inequality (16):

l( gl()>—>min
(i (J

)> > (25](27“) g,(f)> Vi: g () c Q()mQ(J)7 k=T1n, +1,

dv® s N o nefl . ;
s (8) < (3, [KO + 20A05) < (@, KOAD7) + Y ol @)@, 2(")
=1
. nm—i_l ' . . A . ~ .
< (&, ) + Z ol (2)(&, 2y = (&, [KD + 201D ),

Note that solutions of the problems (17) corresponding to the same vertex in different sim-
plices Q@ will coincide (if the linear programming problem admits several solutions, they can be
chosen the same). Hence, the piecewise-defined value function (9) obtained by solving the Cauchy
problem

{ Z(Z =0, i=1,N, t& [t t1] as)

=K x (H®)=1 §=T1N,

will be continuous in (¢, Z) throughout the entire domain. The objective function in (17) corresponds

to the values V) (t, #) at the simplex vertices, and thus it tends to reduce function values at these
points.

5. CONTROL SELECTION

Before solving the problem (18), we need to determine the controls y,(j) from (10) at the vertices
of simplices in order to construct matrices 2@ based on these values. In the previous works [11-13],
they were chosen in such a way that the derivative (11) of V® (¢, ) is minimized in each simplex Q).
However, taking into account the piecewise defined nature of this function, there was ambiguity
in the choice of y,(j). To eliminate it, the controls were additionally adjusted, and this negatively
affected the resulting solution.

In this paper, we demonstrate that the method allows the use of controls obtained on the
basis of alternative approaches, reinforcement learning in particular. As a result, the constructed
approximation of the value function (6) can be more accurate.

Reinforcement learning [16] is a domain of machine learning, where the agent’s behavior is
adjusted by repeated interaction with the environment, depending on the rewards received from it
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for each action performed. In our task, the agent implements the control strategy u = u(t,x) and
we choose

0, t <ty

19
—d2($,X1), t:tl, ( )

L(t,x) = {

as a reward function. Here d(x, X)) is the distance between a point = and a set Xj.

Prozimal Policy Optimization (PPO) is one of the reinforcement learning algorithms in which
the control strategy is represented using a neural network, and its weights are updated by gradient
descent while optimizing some objective function. The objective is to maximize the cumulative
reward at the end of the experiment; however, this function is described by a more complex ex-
pression [17] to ensure a stable learning process.

The advantage of the PPO algorithm is possibility of its application to continuous dynamics,
including the system (1). Some other algorithms also have this property, for example, DDPG [18]
and SAC [19]. They can also be used in the proposed approach. However, they showed lower
accuracy in the examples discussed below.

Let the set P admit finite-dimensional parametrization. In this case, a vector u € P is defined by
parameters 6 € R", where 0; € [0?‘“‘, 6x] j = 1,r. The goal is to determine these parameters for
each fixed position (¢, z). However, since the PPO algorithm is designed for stochastic strategies, 6
is usually assumed to be a random vector with a multidimensional normal distribution 6 ~ A (u, X)
with a diagonal covariance matrix. When using the algorithm, at first a neural network is trained,
which predicts the parameters of this distribution, and then realizations of the corresponding
random vector are generated during the calculation of values u(t, ). Nevertheless, having a trained
neural network, it is easy to obtain deterministic control. Instead of generating a random vector,
one can take the corresponding expected value: 6 = p.

Note that the values of 6; are subject to interval constraints, while the support of a normal
random vector is the entire space R". In order to meet the requirements, the parameter values
are “truncated” [26]. New values are obtained using the formula 6; = min{6***, max{6;, 62"}},
although other transformations are allowed. In addition, distributions with a bounded support [27]

can be used for the specified random variables.

Such deterministic controls, which are based on a neural network model and satisfy the con-
straint (2), are further denoted as u(t,z). The resulting piecewise affine control used in this work
is determined by formula (10):

ult,z) = 3 ol (@it gf)), = el (20)
k=1

The function 4(t,x) will be continuous in (¢,x) due to the structure of a neural network. It
also follows that as the diameter of the partition of € into simplices tends to zero, the resulting
control (20) will converge pointwise to u(t, ).

6. MAIN RESULT

The constructions above allow us to prove the following theorem.

Theorem 1. Let the matriz functions K (t) € R tD)x(at1) pe g solution of the Cauchy prob-
lem (18). Let V(t,Z) be a continuous piecewise quadratic function defined on [to,t1] x € x {1}

and determined by the equation VO (t, &) = (&, KO)HDE) in each simplex QW . Then the set
Wint(t) = {x Ry ’ V(to,Z) < 5} (assuming that it is not empty) is an internal estimate of the

solvability set of the original nonlinear system (1), i.e.

Wi (tg) € We(to, t1, X1).
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The proof is based on trajectory analysis of the nonlinear system (1), closed by control (10).
However, it does not depend on the method of finding the vectors y,(;) (t) € P at the vertices of the

simplices. The proof follows the scheme presented in [13].

7. EXAMPLES
7.1. Nonlinear System

Consider the motion of a pendulum on a trolley, taking the frictional force into account [28].
It is described by the system of equations

{?”1 . ) (21)

9 = —w”sin(xy) — 2yx9 — w* cos(x1) X u,

where w and ~ are parameters, x1 and w2 are the angle of pendulum deflection and the angular
velocity, respectively. The control v denotes acceleration of the cart. We consider w =1, v = 0.1.
It is required to steer the system from the initial position (—0.3, 0.6)” at time tq = 0 to a small
neighborhood of the origin at time ¢; = 1. The control is bounded by u € [—1, 1].

For neural networks used in the PPO algorithm, we chose a two-layer perceptron [29] with
activation function tanh (z) due to its simplicity. During training, 10000 test trajectories of the
system (21) were generated, starting from various random points 20 € Q at time 9. The control
strategy u(t,z) was updated based on the penalties (19). Figure 1 shows the trajectory obtained
using the PPO algorithm without any additional modifications. The distance between the end
point of the trajectory and the origin is 0.027.

To calculate the piecewise quadratic function (9), at first we fixed the vertices gx € R? located
on a rectangular grid with sides of length A = 0.1. These vertices were used to partition the set
Q=[-1,1] x [-1,1] into N = 800 equal simplices. Figure 2 shows the results obtained using the
control selection algorithm described in [13]. The dotted line indicates the boundary of the set
which a trajectory of the system is a priori guaranteed to hit. The distance between x(¢1) and the
target set is 0.043.

1.00 1.00 ‘
}
0.751 0.751 ‘
0.501 0.50 i
!
0.251 0.251 AN
o~ o~ 1 ‘ \ |
& 0.001 < 0.00 0 ; !
—0.251 —0.251 7 |
I
|
—0.501 —0.504- * Start point :
*  Start point e Target set ‘
-0.754 @  Target set —0.75 Trajectory }
Trajectory || === A priory estimate |
—-1.00 T T . T T . - —1.00 =Ll 2 PP , . ,
—1.00 =0.75 —=0.50 =0.25 0.00 0.25 0.50 0.75 1.00 —1.00 —=0.75 —=0.50 —0.25 0.00 0.25 0.50 0.75 1.00
I I
Fig. 1. The trajectory based on control (¢, z). Fig. 2. The trajectory based on control strategy

described in [13].
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Fig. 3. The trajectory based on approximation (20) Fig. 4. Neural network control 4(t,z(t))
of neural network control u(t, z). and the resulting control u(¢, z(t)).
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Fig. 5. The boundary of solvability set at ¢ = o and trajectories
of the system (21) closed by the resulting control u(¢, x).

Figure 3 shows the trajectory obtained by the combination of methods described in the current
work. The same partition into simplices is used. The distance from the origin in this case is 0.023.
The change in error is explained by the difference between the original neural network control 4 (¢, x)
and its approximation (20). Figure 4 shows the controls corresponding to the trajectories shown in
Figs. 1 and 3. The a priori error is less for the presented method than for the algorithm [13]. This
example confirms that the a priori estimate obtained from the value function approximation (9) is
guaranteed in each case.

In Fig. 5, continuous lines indicate the trajectories obtained by the proposed method when
starting from various starting points. Arrows indicate the direction of movement along the trajec-
tories. In addition, the dotted line stands for the boundary of the solvability set using the class
of piecewise continuous program controls, calculated on the basis of the Pontryagin’s maximum
principle [30, pp. 336-344].
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7.2. Linear System

To better understand accuracy of the proposed approach, consider a linear system
i‘l = I, .i‘g =Uu (22)

on the segment ¢ € [0,1]. In this case, the method of piecewise linearization described above is not
needed, however, this system is well studied in literature [30]. Let the control satisfy u € [—2,2]. It
is required to transfer the system to the origin at time ¢ = 1. Then it can be proved that the point
2% = (0.5,0)7 lies on the boundary of the solvability set at the moment ¢ = 0, and it is achieved by
piecewise constant control u*(¢) = 2 x sgn(t — 0.5).

A neural network model of the same structure as in the previous example was chosen for numer-
ical experiments. The model was trained on a personal computer for one hour, and then piecewise
quadratic functions of the form (9) were constructed for different diameters of simplices Q). We
consider the set Q = [—1.5,1.5] x [-1.5,1.5].

Figure 6 shows the resulting trajectory and the a priori estimate of hitting the origin from the
point 20 when step of the rectangular grid was A = 0.25. This corresponds to the division into 288
simplices shown in the figure. Figure 7 shows the corresponding control u(t,z(t)) of the form (20).
Figure 8 shows the solvability set calculated on the basis of the Pontryagin’s maximum principle
as well as the trajectories obtained by the proposed method when starting from various points.

Figure 9 shows dependencies of the a priori and a posteriori errors on the number of simplices in
the partition Q = [JN, Q® for the same starting point z° = (0.5,0)7. As the partition diameter
decreases, the a posteriori error converges to 0.104, which corresponds to the accuracy of the original
neural network control @ (¢, x). Note that this accuracy can be improved by considering other neural
network models, which can require more parameters. In addition, it follows from Fig. 9 that the
a priori error decreases at first, yet at some point it begins to increase again. This increase is
explained by imperfection of auxiliary optimization problems (17): their solutions in neighboring
vertices can differ significantly from each other, and it affects the stability of the method when
using a small partition diameter. This problem can be eliminated by replacing the objective in

2.0 : —
1.5 i
151 7
1.0
1.0
0.5 0.51
2 00 : - s 00
SFie. —05
-0.5
~ % Start point —1.01
-1.0¢ ® Target set
Trajectory —1.5
N === A priory estimate
Sp NN N —2.01_ - S . i
-5 -0 =05 00 0.5 1.0 L5 0.0 0.2 0.4 0.6 0.8 1.0
I t
Fig. 6. Trajectory of the system (22) and a priori Fig. 7. The resulting control u(t, z(t)) for the
estimate of hitting the target point. system (22), and the optimal control u*(¢).
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Fig. 9. Deviation from the target point 2! = (0,0)7 depending on the number of partition simplices.

Fig. 10.
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Fig. 8. Boundary of the solvability set at ¢t = to and trajectories of the system (22)
when using the resulting control u(¢, x).
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problems (17) or by introducing additional “regularizing” terms into the system (18), which were
proposed in [11].

Figure 10 shows computation times of the value function estimate depending on the number
of simplices, using a fixed neural network strategy 4(t,z). Time costs increase linearly as the
number of simplices becomes greater. If this number is not too large, the computation time is
small compared to the training time of a neural network.

8. CONCLUSION

The formulas presented in this paper make it possible to obtain a feedback control strategy that
solves the problem approximately, as well as a piecewise affine approximation of this strategy on a
set of simplices. The latter is used to construct a continuous piecewise quadratic function which
defines an internal estimate of the solvability set in a target control problem. For the obtained
piecewise affine control, a guaranteed a priori error estimate of hitting the target set is valid. The
proposed approach can be used in solving control problems for nonlinear systems in case of a small
state space dimension.
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Abstract—A novel cybernetic model has been developed to analyze the dynamics of the “bridge—
pedestrians” system in the transverse direction, incorporating the functional state of the pedes-
trians. An analytical expression has been derived for the critical number of pedestrians capable
of inducing rocking in the bridge. Additionally, the stability region of the system has been
assessed using the frequency criterion established by Ya.Z. Tsypkin, specifically applied to the
parameters of the London Millennium Bridge. The results of this study indicate that the rock-
ing of the bridge may be attributed to a minor neuromuscular delay among pedestrians, rather
than to the synchronization of their steps, as suggested in several existing publications. Fur-
thermore, the obtained results may have broader implications for other classes of oscillatory
human-machine systems.

Keywords: stability, reliability of structures, swinging bridge, footbridges, London Millennium
Bridge
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1. INTRODUCTION

Over the past two centuries, numerous incidents involving pedestrian bridges have been docu-
mented, including the notable swaying of London’s Millennium Bridge [1]. Constructed to com-
memorate the arrival of the third millennium, the bridge features a lightweight suspension structure
characterized by cables positioned below deck level. The Millennium Bridge stands out as one of
the few structures for which extensive and valuable observational data has been gathered. Notably,
it has been observed that lateral sway increases with the number of pedestrians and diminishes
when pedestrian traffic decreases or comes to a halt.

The incident involving the Millennium Bridge prompted a significant surge of publications by
esteemed researchers in prestigious scientific journals [2-5]. Initial studies concluded that the
large amplitude of oscillations was primarily induced by the synchronous stepping of pedestrians.
This finding not only resonated with public perception but also aligned well with the theoretical
framework of synchronization in coupled oscillators [6]. However, subsequent observational data
emerged that could not be solely explained by synchronization. For instance, oscillations unrelated
to the average step frequency were recorded, as well as the identification of a specific critical number
of pedestrians capable of inducing rocking in the bridge [1, 7]. In light of this evidence, several
researchers proposed that synchronization may be a consequence rather than a causative factor in
the rocking of the bridge [4, 5, 8-10].
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In this paper, a novel model for the dynamics of the “bridge—pedestrians” system in the trans-
verse direction, incorporating the functional state of pedestrians through a delay link, is proposed.
Based on this new model, an innovative approach to analyze the stability of the system is intro-
duced.

Existing approaches to the analysis of the “bridge—pedestrians” system often describe the system
model in terms of mechanics and the influence of dynamic forces in both time and frequency
domains [11, 12]. The most commonly encountered dynamic model of a bridge in the literature is
represented by the following equation [8, 12, 13]

Mi(t) + Ci(t) + Ka(t) = F(t), (1)

where M, C' and K are the mass, damping and stiffness matrices, #(t), (t) and z(t) are the
acceleration, velocity and displacement vectors, F(t) is the vector of external forces, which is
defined as [14]

F(t) =Gy + z”: Gpay sin(2mi ft — ¢;), (2)

i=1
where Gy, is the human weight, o is the Fourier coefficient of the ith harmonic, f(¢) is the frequency,
¢; is the phase shift of the ith harmonic, 7 is the ordinal number of the harmonic, and n is the total
number of harmonics.
By analogy with (1), the dynamics of pedestrians can be modeled as an oscillator characterized

by its own mass, stiffness, and damping coefficient. This methodology has been applied to analyze
vertical oscillations in [15, 16], where the “bridge—pedestrians” system is expressed as

ms 0 Zs(t) Ll +e. —ce| | as(t) n ks + ke —ke| Jzs(t)| ] fs(t) (3)
0 me ic(t) —Cc Ce ic(t) —ke ke xc(t) B fc(t) .
In equation (3), m, ¢, and k denote the mass, damping coefficient, and stiffness, respectively;
the index s corresponds to the bridge, while ¢ pertains to the pedestrian.

The inverted pendulum model with a rigid support and limited motion in the frontal plane effec-
tively captures key features of pedestrian behavior on a horizontally oscillating surface, including
both kinematics and kinetics [9, 17]. One of the assumptions underlying this model is that ground
surface oscillations do not influence the timing of pedestrian steps. However, as demonstrated
in [18], this assumption does not always hold true in practice. In this paper, a law for controlling
foot placement that accounts for the delay in foot contact with the ground is proposed.

Recent advancements in addressing the stability of pedestrian bridges are presented in works such
as [8-10], where results are derived based on the assumption that step synchronization arises as a
consequence of bridge swaying. This condition facilitates the formulation of a relationship between
the amplitude and phase balance of pedestrians and the bridge, allowing for the determination of
a critical number of pedestrians that satisfy this relationship. In [8-10], pedestrian dynamics are
modeled using the Van der Pol oscillator

flx, &) = Ma? + 22a®)d + iz, (4)

where z is the coordinate of the pedestrian’s center of mass, A is the damping, a is the limit cycle
amplitude, w is the step frequency. In the subsequent work by the authors [8], the force F(t)
exerted on the bridge by pedestrians is articulated in terms of the average pedestrian damping
coefficient & (@y, ?). This coefficient is significantly influenced by the ratio of the bridge oscillation
frequency €2 to the pedestrian step frequency w;. It was found that there is a large range of
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pedestrian step frequencies and bridge oscillations for which & (w;,Q2) < 0. This means that, at
a certain critical number of pedestrians, the overall modal damping of the bridge may become
negative. Consequently, the authors proposed a straightforward formula for calculating the critical
number of pedestrians

Ny = _CO/E, (5)

where ¢q is the passive damping coefficient of the bridge.

The paper is structured as follows: Section 2 presents the problem statement. Section 3 describes
the model of the “bridge-pedestrians” system. Section 4 discusses the stability analysis of this
system and provides analytical expressions for the critical number of pedestrians. Finally, Section 5
outlines the results and their potential applications.

2. PROBLEM STATEMENT

The existing literature employs an approach to modeling pedestrian behavior that emphasizes
understanding the mechanisms of walking as governed by the central nervous system. However, the
high sensitivity of humans to surface vibrations elicits a response that triggers subsequent muscular
actions. This observation underscores the necessity of conceptualizing humans as integral compo-
nents within a closed system, taking into account their physical and psychophysiological properties.
This perspective is well-established in the field of human-machine systems and is predicated on the
characterization of human functional states [19]; however, it has yet to be applied to the dynamics
of gait.

Without delving into the causes of bridge swaying, we will assume that individuals traverse
the bridge at an average step frequency, exerting force on the surface equivalent to their body
weight while simultaneously striving to maintain balance through visual and vestibular information
processed by the central nervous system. The corresponding block diagram for such a system is
presented in Fig. 1. In this context, this paper proposes the development of a cybernetic model
for the “bridge—pedestrians” system and aims to investigate its applicability for designing and
analyzing bridge structural vibrations using methodologies from automatic control theory. To
achieve this, it is essential to delineate the dynamics of movement for each component within the
“bridge—pedestrians” system through dynamic links.

Step amplitude Bridge oscillation
and frequency e P = Bridge amplitude

model model

Fig. 1. General diagram of the “bridge—pedestrians” system.

3. MODEL OF THE “BRIDGE-PEDESTRIANS” SYSTEM

Human movement encompasses a variety of types that are often difficult to characterize due to
their inherent randomness. Consequently, existing literature has examined the effects of groups
of individuals engaged in walking [15], running [20], and jumping [21] on structural design con-
siderations. By defining specific tasks and categorizing human movements, it becomes possible to
introduce an approximate mathematical description of these actions that captures the fundamental
properties of locomotion. Such descriptions are particularly relevant in the fields of bipedal robot
design and human-machine systems.
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Fig. 2. Block diagram of the “bridge-pedestrians” system.

In this context, the findings from cybernetic models of pilot control actions — specifically con-
cerning error tracking and pitch deviation rates — are well-documented. These models have con-
tributed to our understanding of oscillatory phenomena induced by pilot actions [22, 23]. Research
into the interaction between human pilots and aircraft has revealed a tendency for individuals
to strive for optimal system control, which manifests as an adaptive property of neuromuscular
dynamics in response to the changing dynamics of the system [19, 22-25].

The concept of optimality in human movement is frequently discussed in relation to the energy
expenditure associated with executing specific actions. This characteristic is particularly applicable
to periodic and repetitive movements, such as sustained walking. On a stable surface, the primary
objective is to maintain balance, a task that individuals typically perform reflexively, without
conscious thought. However, when navigating an unstable surface, individuals must exert effort or
control to sustain balance. This process requires time for the central nervous system to process
information and make decisions, which introduces a certain degree of delay.

A clear illustration of the interaction between a person and a structure can be observed in every-
day situations, such as when traversing a relatively lightweight suspension bridge on a two-wheeled
vehicle (e.g., a bicycle). In such scenarios, the bridge begins to sway noticeably. Notably, the more
actively an individual attempts to maintain balance, the more pronounced the oscillations of the
bridge become. In all instances, consciously reducing one’s efforts to maintain balance — essentially
decreasing the proportional gain coefficient “in the head” — can mitigate these oscillations.

The cybernetic model of human behavior in the frequency domain is structured as a series of
interconnected blocks, each representing the processes of perception, strategy development, and
control action processing [25, 26]. Three primary stimuli facilitate the perception of information:
visual, vestibular, and proprioceptive. Within the framework of a structural approach, it is posited
that the processes of information processing and strategy formulation occurring within the central
nervous system are analogous for each type of perceptual stimulus. Each action performed neces-
sitates a specific duration of time, which can be effectively characterized by a delay link; this delay
tends to increase as the complexity of the control process escalates.

The aforementioned adaptive property of humans is represented through correction blocks cor-
responding to each perceived stimulus, with the cumulative response subsequently directed to the
motor system. This structure ultimately delineates the transfer function governing human control
actions [25, 27-29].

The most extensively studied model is the correction model developed by individuals based on
visual perception of a command stimulus. Numerous studies have demonstrated that individuals
possess the ability to amplify, differentiate, and smooth the perceived signal [27-29].

Figure 2 illustrates the model of a pedestrian who utilizes both visual and vestibular channels
for information perception while walking. According to this model, a pedestrian attempts to
compensate for discrepancies in the angle and angular velocity of roll to maintain balance during
locomotion. Thus, the pedestrian operates within a closed-loop system, with their behavior being
influenced by the dynamics of the bridge.
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The transfer function of the pedestrian model relating the error in angle deviation to the roll
angle can be expressed as [24, 30, 31]

Wp(s) = NK,sK;G(s), (6)

T26—TS
GO = Froers v (™)

where N represent the number of pedestrians, while K, and K; denote the gain factors, G(s) is
the transfer function governing the neuromuscular dynamics of pedestrians, & and T refer to the
damping factor and frequency, respectively, whereas 7 is the neuromuscular lag time. It is important
to note that, as demonstrated in [31], the value of K} is negative.

Considering the bridge model as described in equations (1) and (6), the transfer function of the
open-loop system comprising the “bridge—pedestrians” interaction — from the displacement in the
transverse direction of the bridge = to the deviation error e, — can be expressed as follows

NK,T?se™"*

Wis) = Wols)Wols) = T et 1 1) (052 7 Cs 7 K

(8)

where K, = K, K;.

4. STABILITY ANALYSIS OF THE “BRIDGE-PEDESTRIANS” SYSTEM

The remaining parameters of the system are assumed to be constant. The following parameters of
the London Millennium Bridge are known: mass M = 81000, stiffness K = 3390733 kg/s?, damp-
ing coefficient C' = 7681 kg/s, and natural frequency 2 = /K/M = 6.5 rad/s [8, 33]. Additionally,
the parameters related to the neuromuscular dynamics of a pedestrian are T = 30, £ = 0.7 [31].

The comfortable time required for information processing in the central nervous system and
the transmission of signals along neuromuscular fibers for pilots in manual control mode is ap-
proximately 0.2 seconds [25, 27]. Due to the movement of the bridge surface, the pedestrian’s
orientation angle changes, presenting a non-standard situation that triggers the adaptation pro-
cess to new conditions. This adaptation is reflected in the settings of the parameters defined in
equation (6), including the delay time. Depending on external circumstances, an individual may
either decrease or increase the neuromuscular delay time. For instance, a reduction in the delay to
0.08 seconds is associated with an increase in neuromuscular tension [22].

To evaluate the magnitude of the delay time and its corresponding frequency, which affect the
stability of the system, it is convenient to employ the frequency criterion established by Ya.Z. Tsyp-
kin [34, 35]. The critical frequency wy; is determined from the following equation

|W(w0i,N)\ —1=0, (9)

where |W| denote the amplitude-frequency response (AFR) of an open-loop system without the
delay link, as presented in (8). Subsequently, the resulting value of wy; is substituted into the
expression for the phase relationship, which generally assumes the following form
0 (wo; 2mn
roa(n) = 20 2 (10)
wo; woji
where 6(wp;) = arctan(WW (wg;)). This critical delay time 7, delineates the transition of the system’s
roots through the imaginary axis, thereby establishing the stability boundary of the system. The
system under investigation will be considered stable when (9) yields has no solutions with respect
to wps; in other words, when the hodograph of the system remains within the unit circle.
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Fig. 3. Amplitude-frequency response of the “bridge-pedestrians” system with and without
the neuromuscular dynamics link.

Let us apply the criteria outlined in (9) and (10) to (8). It is noteworthy that the AFR (8)
coincides with the AFR that does not account for the neuromuscular dynamics link across a broad
frequency range of 1-10 rad/s (see Fig. 3). This observation allows us to infer that for the purpose
of assessing the stability of the system, the neuromuscular dynamics link can be neglected within
this frequency range. Consequently, equation (8) can be reformulated as follows

~ B NK,se *
W) =Gt os 1 5) (11)

Let us move from s to jw in (8) and isolate the real and imaginary components without taking
into account the delay link

Sy jw(K — Mw?) Cw?
W =K,N . 12
(jw) = Ky [(K “Mo?)? 1 C%? | (K — Mo 1 O (12)

Then (9) can be written as
K2ZN2[(Cw?)? — W (K — Mw?)?|
5 —1=0, (13)
{(K — Mw?)? + C'Qwﬂ
by expanding the brackets, we derive an eighth-order equation represented as

A8w8 + A6w6 + A4w4 + A2w2 + Ag =0, (14)

where Ag = —M*, Ag=4KM?* — KZM?N? — 2C°M?, Ay =2KK;MN?* - 6K*M? + C*K;N*+
AC?KM, Ay = 4K3M — K?K2N? —2C*K?, Ay = —K*.

We perform a variable substitution in equation (14) by letting w? =¢. This substitution is
essential for the subsequent analysis of the obtained solution. The solution to equation (14) with
respect to w, expressed symbolically using MATLAB, yields the following expression

2
2= l \/04 + % +4K M303+3C2K,2 N2 — 202 M 203 — 09 — K2 M2N203 — 0 — 207

40?2
1 (15)
2 _SMK3 _ (4 2K 2N2_ K2M?2 2
4
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2 3 ;| 202K,2N?
where o1 = 2KK,2MN?, 0y = 4C2KM, 03 = \/4354 A MM o T T+ O

o4 =202 M? + K2 M2N? — 4K M3, 05 = 2K?K,?N?, 06 = 4C?K?, 07 = K,*N*,

The expression in equation (15) appears under the square root and is dependent on the variable
parameter representing the number of pedestrians N. Consequently, numerically, equation (15)
can assume any values, including complex ones. However, the physical context of the problem
necessitates that only real quantities are considered. Therefore, it is imperative to establish a
condition for the existence of a real non-negative solution. One such condition is the non-negativity
of the radical expression in equation (15). Based on this, all conditions for a real solution are derived
symbolically using MATLAB

052 +o7—8MK3+aﬁ N —C4 4+ 03+ C2Kp? N2 —6 K2 M2+ 0y
4 M8 o5 M*4

NER/\2M2\/

(16)
+2\/C’4+%+4KM304—2C2M204+3C2Kp2N2—og—Kp2M2N2o4—01—02

=2C? —4KMA2C? 403 #4KMAO <N,

where o1 = 2 K Kp? M N2, 09 = Kp?> N%2, 05 =4C?* K M,
o1 =\ 1 — B - BEOM  or y BCPREINE | en oy — 902 M2 4 Kp? M? N2 — 4K M,
06 =2K?*Kp> N2, o7 =4C? K?, 05 = Kp* N*.
After conducting both numerical and analytical analyses of the aforementioned constraints in

MATLAB, we determine that the smallest N for which a real solution exists is governed by the
condition

KyN*+ (AMKK} — 2C*°K})N? + C* — 4AMKC? > 0. (17)

By setting the left side of equation (17) to zero and substituting N? = t5, we obtain an expression
for the discriminant

Dy = (AMKK] — 2C°K})* — 4K, (C* — 4AMKC?) = 16 K, M*K*, (18)
VD3 = +4K) MK, (19)
then the roots of (17) can be found from the expression

—AMKK} +2C*K} + 4K MK

ty = 20
2 2Kg ) ( )
o —4MKK] +2C°K) —4K; MK

Substituting the numerical parameters into equations (20) and (17), we find that t5 > 0 and
t3 < 0. We will subsequently perform the inverse substitution of ¢, back to N2 and extract the root
of t3. Therefore, we will discard 3 < 0, leading to

—4AMKK} +2C°K} + 4K MK

N? = 292
2K ; (22)

from where, leaving only the positive root, we get:

C
N =—. 2
K, (23)
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Fig. 4. Amplitude-phase frequency response of an open-loop system with varying numbers of pedestrians.
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Fig. 5. The dependence of the number of pedestrians on the critical neuromuscular delay is indicated.
The region of stability is marked with hatching.

By substituting the system parameters into equation (23), we obtain N = 160.0208, which cor-
responds to the critical number of pedestrians derived from Ya.Z. Tsypkin’s criterion, denoted as
NCCT = 160. Thus, this value represents the maximum possible number of pedestrians at which
the system remains stable, independent of delay. The graphical representation of solution (9) is
illustrated in Fig. 4, where the numerical result coincides with that obtained from equation (23).

Further increases in N lead to the intersection of the hodograph with the unit circle at two
points. For instance, at N = 167, we find two solutions: wp; = 6.45 rad/s and wpy = 6.48 rad/s,
with the corresponding points indicated in Fig. 4. Since wgo > wp1, it follows that mpe < 791, where
To2 represents the critical delay time. For the given hodograph, this can be determined from the
expression

rop = T O02), (24)
wo2

Substituting the numerical values into equation (24), we obtain 792 = 0.086 s. Thus, for N = 167,
the critical delay for stability is 792 = 0.086 s, which corresponds to excessive neuromuscular tension
in individuals [22]. An increase in the number of pedestrians further leads to an escalation in the
critical delay required for maintaining stability.

Figure 5 illustrates the relationship between the number of pedestrians and the neuromuscular
delay N (1), as derived from the solutions of equations (9) and (24). The figure clearly indicates
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Fig. 6. Dependence of the amplitude of bridge oscillations on time for 250 pedestrians walking at a frequency
of 5.4 rad/s.
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Fig. 7. Frequency response of the “bridge—pedestrians” system with different values of neuromuscular delay.

that the stability region is constrained by the number of pedestrians at minimal delays, with a
sharp increase observed in the region of delay values that are typical for humans.

The dependence of the bridge oscillation amplitude on time, influenced by 250 pedestrians
walking at an average frequency of 5.4 rad/s and exhibiting varying delays, is depicted in Fig. 6.
At a normal delay of 7o = 0.2 s, the bridge exhibits stable oscillations with an amplitude of approxi-
mately 20 cm. In contrast, the neuromuscular tension associated with a smaller delay of 7y = 0.05 s
results in a gradual increase in oscillation amplitude.

Figure 7 presents the amplitude-phase frequency response (APFR) of the “bridge—pedestrians”
system for different values of neuromuscular delay (0.02 s and 0.2 s), which introduces a corre-
sponding phase shift between the input and output of the system.

Thus, the stability of the system is influenced not only by the number of pedestrians but also
by the delays they introduce due to the characteristics of their neuromuscular systems. This factor
had not been previously considered in the analysis of the “bridge—pedestrians” system.
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5. CONCLUSION

This paper proposes a novel approach to studying the stability of human-machine systems with
oscillatory dynamics, exemplified by the “bridge—pedestrians” system. A linear model of the closed-
loop “bridge—pedestrians” system is examined, incorporating both pedestrian muscle dynamics and
processes occurring within the central nervous system. This approach enables us to represent the
closed-loop system as a transfer function that includes a delay element, thereby facilitating stability
assessment using methods from automatic control theory.

The applicability of this approach is demonstrated through an analysis of the swinging of
the London Millennium Bridge during its opening day, when pedestrians traversed it. Utilizing
Ya.Z. Tsypkin’s frequency criterion across various delay values, we derived conditions pertaining
to the number of pedestrians that ensure the stability of the closed-loop system is not compro-
mised. Numerical results indicate that significant bridge oscillations can be attributed to reduced
neuromuscular delays among pedestrians. Specifically, due to their heightened sensitivity to minor
surface vibrations, pedestrians require time to adapt to changing conditions, which manifests as
excessive neuromuscular tension. A rapid pedestrian response introduces a minimal phase shift
between the input and output of the “bridge—pedestrians” system, resulting in bridge swaying and
potential loss of stability. Conversely, a slower response introduces a phase shift of approximately
90 degrees, which contributes to stabilization.

The proposed approach provides a more nuanced framework for analyzing and designing struc-
tures utilized by people that exhibit oscillatory dynamics. Future research could focus on refining
the parameters of the neuromuscular dynamics model while considering nonlinearities in the bridge
model and the impact of external disturbances.
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Abstract—The issues of modeling objects and systems based on the graphical representation
of finite state machines using algebraic methods are considered. The problem of finite state
machines synthesis based on the construction of the algebra of their graphoids is solved. With
this aim existing operations on finite state machines are transferred to their graphoids. Subject
to additional requirements, that may emerge during the analysis of the subject area new opera-
tions are introduced. This defines the algebra of finite state machines graphoids, which enables
the synthesis of graphoids for finite state machines models using the algorithm proposed by
the authors. Statements confirming the correctness of the algorithm are proven. A numerical
example of the finite state machines model graphoid synthesis for the joint actions of functional
groups in an emergency area.

Keywords: finite state machines graphoids, operations on graphoids, algebra of graphoids, the
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1. INTRODUCTION

An effective tool for modeling the dynamics of object and system functioning in various sub-
ject areas is finite automata [1]. However, as the complexity of the modeled objects and systems
increases, the size of the input, output, and state alphabets of the automaton grows significantly.
This substantially complicates the modeling process, makes the models excessively cumbersome,
and hinders the interpretation of the modeling results. In this case, an effective approach is the
use of a systemic methodology, according to which the object or system is initially decomposed
into components, automata models for individual components are developed, and a general model
is synthesized [2, 3]. The implementation of each of the aforementioned stages largely depends on
the specific characteristics of the subject area of the modeled objects or systems. The most chal-
lenging stage is the synthesis of the general model, as it has the greatest impact on its adequacy.
For instance, in [4, 5|, automata theory methods were used to model the behavior of digital pro-
duction twins based on automata algebra, which included not only well-known operations but also
operations introduced by the authors to account for the peculiarities of the modeled object. Other
examples of introducing domain-specific operations on automata and utilizing automata algebra
can be found in [6-8]. Another challenge arising during the synthesis of automata models is the
presence of significant constraints on the selection of possible components for the general model.
If the component models must correspond to predefined objects or systems, specific requirements
may be imposed on the synthesis process of the general model. These requirements include the
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necessity to eliminate invalid combinations of states in the components of the general model. An
example of this is the task of modeling the joint actions of several functional groups involved in
responding to an emergency situation [9, 10]. Constraints may arise, for instance, from the need
to prevent conflicts between functional groups or to account for synergistic effects during their
coordinated actions [11]. Automata that model the functioning of these groups serve as compo-
nents of the general model for the emergency response process. It should be noted that the set of
states of the components of the general model is often fully known. In this case, the automaton
is represented as a labeled graph (a graphoid), where the vertices correspond to states, the edges
represent transitions between states, and the edge weights describe the automaton’s responses to
various input symbols. This circumstance enables the synthesis of the graphoid of the general
model by combining the graphoids of the automata models of its components. The solution to
this problem can be achieved using algebraic methods. In [12, 13], the concept of an algebra of
finite deterministic automata was introduced based on a set of composition operations, which are
also applicable to automata graphoids. In particular, necessary and sufficient conditions for the
decomposition of an automaton into a network of component automata were established using the
introduced operations and by solving automaton equations through a specially defined language
of paired algebras. The approaches used are naturally applicable to automata graphoids, whose
representation is simply augmented with descriptions of the corresponding automata. However, in
some subject areas, the solution obtained using the approach described in these works may fail
to produce meaningful results because it does not account for potential constraints on the joint
functioning of the components. In this regard, the task of developing a universal approach to syn-
thesizing the graphoid of the general model, which takes into account the constraints on the joint
functioning of the modeled objects or systems, is particularly relevant. In this work, this problem
is addressed through the use of algebraic methods, and the correctness of the proposed approach
is also substantiated.

2. THE ALGEBRA OF FINITE STATE MACHINES GRAPHOIDS

By the algebra A = (N, S), according to [14], we mean the set A/ along with the operations
defined on it.

S: {f117f127"'7fln17f217f227"'7f2n27"'7fml7fm27"'7fmnm}7

where A is the carrier, and S is the signature of the algebra (fy; is the ith k-ary operation).

A graphoid G of a finite deterministic non-initial abstract Moore automaton A is a quadruple [15]
(Q,F, X,Y), where @ is the set of numbered vertices corresponding to the states of automaton A;
Fis the operator describing weighted edges, i.e., transitions between states and their corresponding
output symbols depending on the input symbols; X is the input alphabet of automaton A; Y is
the output alphabet of automaton A.

The notation A(G will be used when automaton A corresponds to graphoid G.
We will now provide descriptions of operator F' that are convenient for further use.
Expression
Flvgt = g (z/y).
It means that if the automaton is in a state corresponding to the vertex of the graphoid ¢’ and the

input symbol x € X, is received, the automaton will transition to the state corresponding to the
vertex of the graphoid ¢’ and an output symbol € Y will be generated.

Denote
Fqi: U {Fx/yqi}.

zeX
yey
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In these notations, the result of the operation of the operator F' can be described as
[Pq = {q" (@ Jy"), .. g @) g (@ fyh)), i = T

It is assumed that in general, {le, ey xj”i} C X, i.e., the automaton can be partial.

The operator F' can be represented as a symbolic matrix, where the elements are pairs x/y. The
algebra of such matrices described in [3] simplifies the process of developing numerical methods for
operating with graphoids. However, this requires justification for the correctness of the operations
used.

The introduction of the concept of the algebra of automata graphoids, where the carrier N is
some set of graphoids Gy, allows formalizing the procedure for synthesizing the graphoid of the
general model of objects or systems, whose automata models are described by graphoids contained
in the set Gy, using various operations.

Let us now turn to the description and justification of the correctness of these operations.

3. ALGEBRA OF FINITE STATE MACHINE’S GRAPHOIDS OPERATIONS
Define the operation x on finite non-empty pairwise disjoint sets My = {m%, e ,m|1M1|} Y

— n n .
M, = {ml,...,m|Mn|}.

Mlx...an:{{ml 7mznn}|21:m>7ln:m}

110"

In this case x is not the Cartesian product because a result doesn’t depend on order of operation.
It enables to provide the commutativity of operations on of finite state machine’s graphoids.

Suppose G1,Go € Gy — graphoids

Gy = (QG17FG17XG17YG1); (1)
Gy = (QG27FG27XG27YG2)' (2)
If graphoids (1) and (2) satisfy the conditions
Yo, N Xa, = 9; (3)
YGQ N XGI =4, (4)
II = G1 X GQ = (QH,FH,XH,YH),
then g1 € Qr will be define like ¢r1 = {q¢,, 96, } and Qr, Fi1, X11, Y11 Will be set by equation:
Qu = Qc, X Qs
Frign = Feiq6, % Fa,qa,;
XH = XG1 X XGQ;
YH = YGl X YGQ.

The graphoid II corresponds to the parallel operation of automata described by graphoids Gy
and Ga, with synchronized state transitions.

If graphoids (1) and (2) satisfy the condition
Xo, N Xg, =9, (5)
then the + of graphoids (1) and (2) is defined as the graphoid
Y =G1+Gy = (Qx, Iy, X5, Yy),
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where ¢y, € Qx, is defined as ¢» = {qg,,9a, }, and Qx, Fx, X5, Yy, are determined by the following
formulas

@y = Qa, X Qay;
Fygs = (Fo,96, % {a96,}) YU ({96, } X FG,4965);
Xy = Xg, UXg,;
Yy =Yg, UYG,.
The graphoid ¥ corresponds to the parallel operation of automata described by graphoids Gy
and Ga, with asynchronous state transitions.
Condition (5) eliminates the possibility of ambiguity during state transitions after performing
the + operation, i.e., it prevents the emergence of a nondeterministic automaton.
It should be noted that from the definition of the x and + operations for graphoids (1) and (2),
it follows that

QayixGr = QG +Ga- (6)
Thus, the algebra A; = (G1,81), where &1 = {x,+} is described and possesses the following
properties:
(G1 X G2) x G3 = G1 x (Ga x G3);
G x Gy =Gy x Gy;
(G1 4+ G2) + G = G1 + (G2 + G3) 5
G1+ Gy =Gy + Gy

Consequently, the algebra Ay is a commutative semigroup with respect to each operation in the
signature Sy.

4. THE COMPOSITION OF GRAPHOIDS

When simulating real systems, it is necessary to take into account the characteristics of the
subject area, which lead to additional requirements for the synthesis of automatic models, which in
turn imposes some restrictions on the operations on their graphs. The most common requirements
are:

1) changing the state of one object or system can trigger a change in the state of another object
or system;

2) an object or system obtained by performing operations may contain invalid states.

In this connection, there is a need to extend the Sy signal of algebra Ay by introducing operations
that allow taking into account the described features.

The first feature is implemented by introducing the concept “state-trigger,” which assumes that
the transition of one automaton into this state initiates the transition of another automaton to a
certain specified state depending on its current state, i.e. at least one of the conditions (3) or (4)
is not met. Consider the process of operation of the automata, which are described by graphs (1)
and (2), in this case.

If the vertex qél corresponds to the state-trigger of A;(G1, automaton, which initiates state
change in Ay(Gy automaton, then for convenience of further description we will designate this
vertex as 102 qél.

Let the A; (G have a trigger state corresponding to the vertex of 762 in1> and in this finite state
machine corresponds to the output character y’él. This symbol simultaneously serves as an input

symbol for the automaton As(Gy and initiates a state transition in it as follows: if A9(Gy was in a
certain state corresponding to the vertex ¢¢,,, and the set of its input symbols that trigger a state
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{x6- Y6} {6 ve,}

{6t 116 Ve,

Fig. 1. Graphoid of the sub-automaton of automaton A o (K.

transition includes y’(";l, then A9(Go transitions from the state corresponding to the vertex qG, &
new state based on the input symbol ygl.

It is also possible that the automaton As (G initiates state transitions in the automaton A4 (G,
i.e., A2(G5 contains a trigger state corresponding to the vertex 761 qéQ.

Thus, there arises the need to describe a graphoid that represents the joint operation of two
automatons, at least one of which contains a trigger state that influences the operation of the other.

If for graphoids (1) and (2) at least one of the conditions (3) or (4) is not satisfied, the composition
o of the graphoids is called a graphoid.

K =G10Ge = (Qk, Fr, Xk, Yi),
if Q, Fi, Xk, Yk satisfy the following conditions:
QK = QG1 X QGQ;

t/l I/t
Frag = | FG/1 qG, < Fc;/2 qGs5
t6Y02
lEYG1
XK = XG1 X XGQ;
YK = YG1 X YGQ,

/

where Féllqglis the transition mapping of the automaton from the state corresponding to the
vertex qg, of graphoid GG; when its input symbol ¢ € Xg, N Yq, appears, resulting in the output
symbol [ € Y,

Similarly, FZG/;qG2 is the transition mapping of the automaton from the state corresponding
to the vertex qg, of graphoid G2, when its input symbol | € Xg, N Yg, appears, resulting in the
output symbol ¢t € Yg,.

It is worth noting that from the definition of the operations o, x and + for graphoids (1) and (2),
it follows that:

QG1OG2 = QG1 xXGo = QG1+G2' (7)

Proposition 1. Let the graphoids (1) and (2) correspond to deterministic automata A; and As,
and do not satisfy at least one of the conditions (3) or (4). Then, K = G1 0 Gy is a graphoid of a
deterministic automaton.

Proof. Assume that the automaton A; 2(K is nondeterministic. Without loss of generality, we
can assume that it contains a subautomaton whose graphoid is shown in Fig. 1, where yé L= xéQ

appears.
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(a) (b)

1 1 1 2
xG, /yG, sz /sz

1 3
Ye, / g,

Fig. 2. (a) Graphoid of the sub-automaton A;, (b) graphoid of the sub-automaton As.

Then, in automata A; and As, there will be subautomata whose graphoids are shown in Fig. 2.

Therefore, in this case, automaton A, would be nondeterministic, which contradicts the condi-
tion of the theorem.

Note that due to the associativity and commutativity of the operations x,U, the composition
operation o also possesses these properties:

(Gl OGQ) OG3 = Gl (¢} (Gg OG3);
G10G2 :GQOGl.

It is evident that if conditions (3) and (4) are satisfied, then G1 o Gy = G x Gbs.

Let us define a new algebra Ay = (Gy,Sy) with the signature Sy = {o, X, +}, which, like the
algebra A;, forms a commutative semigroup under each operation.

5. THE OPERATION OF GRAPHOID FILTERING

After performing the binary operations of the signature Ss a new graphoid of the algebra A,
is obtained. The automaton corresponding to this graphoid may not satisfy the constraints for
the joint functioning of the components of the overall model because the resulting automaton may
contain invalid combinations of their states, considering the specific characteristics of the domain.
That is, conflict situations arise in the resulting automaton (it is assumed that the set of conflict
situations is defined by the decision-maker). As a result, there is a need to introduce a filtering
operation V, which allows excluding vertices of the graphoid that correspond to invalid states of
the automaton. These vertices will also be referred to as invalid.

It should be noted that in [12, 13], only the issues of finding and removing unreachable states of
automata were studied, which helps reduce the dimensionality of the problem, but may not meet
the requirements of the domain.

Let Q1,...,Q, be the generators of the algebra As, i.e., the graphoids from which, using the
operations signature Sy of the all other graphoids of the carrier Go can be obtained.

Let us define the set W = {W;,... Uy, ..., U} of invalid vertices of some graphoid. Each ver-

l l
tex Wy corresponds to the set {q& e ,qéi’“'
! [v]

bra As.

} of vertices, which are the generators of the alge-
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Let the graphoid H = (Qg, Fr, Xi, Y ) be obtained by transforming the graphoid Gy, ... ,G, € Go
using the operations of the signature Sy. Then, the set of all vertices of the graphoid H is as follows:

QH = {QGla'--aQGma{QGij|QGij = QGi X QGj7Vi7j S {l,m},z #]}av
W =Qa, XX Qay, Vit i € {1m},ir # L ;éin}}.

,,,,,,,,,,

Let us define the function
1, if U, Cqy

0, otherwise.

7T((]Ha \Ijk) = {
Then the vertex qg € Qg is invalid if:
T
Z w(qm, Vi) # 0.
k=1
Let us denote as
.
Ep = {QH € Qul>_7(qu, Vi) # 0}
k=1

a set of invalid vertexes.
For exclude invalid states, we introduce a unary filtering operation V.

The graphoid Vz,, H is called the filtration of the graphoid H by the set Zp if it is a subgraph
of the graphoid H with the set of vertices QVEH o =Qun\ZH.

Thus, the algebra A3 = (G3, S3) with the signature S3 = {V, 0, x,+} is obtained.

6. ALGORITHM FOR GRAPHOID SYNTHESIS OF A FINITE STATE MACHINE MODEL

To develop this algorithm, we first define the algebra of graphoids, whose signature contains
only the operations necessary to solve the problem of synthesizing graphoids for automaton models,
taking into account the features described above.

Consider automata functioning simultaneously, which are described by graphoids (1) and (2).
Their state transitions can occur either simultaneously or at different times. Therefore, the opera-
tion of the automata can be:

e Kither synchronized, which in the synthesis process is described by:
— the operation X, if they do not contain triggers that influence each other’s functioning;
— the operation o, if they contain triggers that influence each other’s functioning;

e or asynchronous, which is described by the operation +.

Both possibilities for the functioning of the automata must be taken into account during the
synthesis process. Based on this, it is necessary to combine the operations o, x and +. For this,
we introduce the union operation U of graphoids.

Let the condition (5) hold for graphoids (1) and (2), and Qg, = Qg,, then the union U of the
graphoids is called the graphoid

C=G1UGy = (Qc, Fo, Xe, Yo),
where Q¢, Fo, X, Yo are defined by following formulas:
Qc = Qa, = Qay;
Feqgo = Fe,q96, YU Fayq65:
Xo=Xa, UXa,;
Yo =Yg, UYe,.
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This operation has the following properties:

(G1UG2)UG3 =G U (G2 UGs);
G1UG2:G2UG1~

Considering the properties (6) and (7) of the operations o, x and + introduced above, the synthe-
sis process of graphoids for automaton models can be carried out using the following combinations
of these operations:

Gl ®G2 = (Gl X Gg) U (Gl + GQ);
G0 Gy = (Gl o GQ) U (Gl + Gg).

The graphoids obtained after performing the operations ® and ® may correspond to automata
that contain unacceptable states. To exclude them, the filtration operation V must be used.

The above leads to the conclusion that the algebra A = (G,S), where S = {V,®,®}, can be
used for synthesizing graphoids of automaton models.
Now, let’s consider the algebraic properties of the operations in the signature S.

From the commutativity and associativity of the operations o, x,+, U, it follows that the oper-
ations ® and ® are also commutative and associative. Therefore, the order in which the synthesis
of the overall model is carried out using these operations does not matter.

Let o denote one of the operations in the set {®, ®}. Suppose the graphoids G;,, Gi,, Gis, - - ., G,
are obtained by transforming the graphoids G, ..., G, € G using operations from the signature S.
Then the following statement holds.

Proposition 2.
V(Gi, G, 0Gi,e...0G;) = v(v(. (V((VGi,) 0 Giy) 0 Gy ) .. ) . G)

Proof. We will use the method of mathematical induction.
Let Eg,, be the set of unacceptable vertices of the graphoid G;,, and let = contain all possible
unacceptable vertices of combinations of the graphoids G;,, G, , Gy, . .., Gy, .
(1) Base case s = 2. We need to prove that V(G;, ® G;,) = V((VG,,) @ Gi,).
The set of vertices V(G;, @ G;,) is QG 0Gi, = QGil’GiQ \ 2, and the set of vertices of
V((VG“) e Gi,) is QGil.Gi2 = ((QGil \EGil) x @GiQ) \E.

Now, let us transform the last expression:
QGiIOGiQ = ((@Gil \EGil) x @GiQ) \E= ((QGil x @GiQ) \ (EGil x QGQ)) \E. (8)

In the set Ea,, X @GQ all vertices are unacceptable, so, Eg,;, X QGiQ C Z, and we can rewrite
the expression (6) as: (QGil X QGiQ) \ =, which corresponds to V(G;,  Gj,).

(2) Assume that the statement is true for s = k We now need to prove that it holds for s = k+1.
We have:

V(Gi,eGi,0Gi,e...0G; oG )
= v(v(v(... (V(V(Gi) e Gi) o Giy) .) .Gis) .Gml),

since the graphoids Gj,,G;,,Gi,,...,G;, are obtained by transformations using the op-
erations of the signature S, the expression G; o G;, e G;, ®... e (G; can be replaced by
the equivalent graphoid H = G;, G, @ G;, ®...e(G; .. Thus, we obtain the expression
V(Gi, Gy, 0Gi,e...0G; oG, )is V(H oG ). Therefore, it is necessary to show the
validity of the equality V(H ¢ G;_,,) = V((VH) e G, ), which was proven in part 1).
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End
Fig. 3. Algorithm for synthesizing graphoids of automaton models.

Thus, the algorithm for synthesizing graphoids from G is as shown in Fig. 3. Its correctness
follows from the algebraic properties of the operations of the signature S and the theorem proven
above.

7. NUMERICAL EXAMPLE

As an example, consider the process of access control to an emergency zone, the organization of
search and rescue operations, and the evacuation of people and material assets from this zone [10],
which involves the use of the following standard functional groups:

(1) Organization of access to the emergency zone, whose actions are modeled by automaton

A1<(G1 = (QG17FG17XG17YG1));

(2) Organization of the search for people and material assets to be evacuated, whose actions are

modeled by automaton As((G2 = (Qa,, Fayy Xas. Ya,));

(3) Organization of evacuation to a safe area, whose actions are modeled by automaton A3((Gs =

(Qas, Fays Xy, YG3))'

During the development of the emergency situation, the listed functional groups can be in states

corresponding to the vertices indicated in table.

Description of the vertices of the graphoids corresponding to the states of the automata
A1(G1, A2(G2, A3(Gs, modeling the actions of functional groups

qél Full perimeter control of the emergency zone

q&, | Implementation of access control

4y, | Waiting in the initial area

q%Q Movement to the search area

qéQ Searching for people and material valuables to be evacuated

qéQ Escorting people and material valuables to the assembly evacuation point

qég Waiting for the formation of the evacuation convoy

qég Accounting for the injured and forming the evacuation convoy

q&, | Movement to the safe zone

AUTOMATION AND REMOTE CONTROL Vol. 86 No.1 2025
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i i
X, / 3 3
a Ve X6 / Yo

Fig. 5. Graphoid Gs.

1 1 3 3
X6,/ Ve, X6y /yG3

2 2
XGy 1y G,

4 4
Xg, / Ve,

Fig. 6. Graphoid Gs.

The graphoids G, Gs, G5 of finite state machines A;, Ao, A3 are shown in Figs. 4-6.

It is necessary to synthesize, using the developed algebra A a graphoid H, that defines the joint
activities of the functional groups. The analysis of the task revealed:

1) potential conflict situations and the determination of the set of unacceptable vertices

1 2 2 1 2 3 2 4 1 4 1 1 4 3 .
- {{qG’17QG’2} 9 {qG17QG’2} 9 {quach'Q} 9 {qG’17qG’2} 9 {QG17qG’27qG’3} 9 {qG17QG’27qG’3}}a

2) the need for automaton As to be triggered by automaton As: if the output symbol of au-
tomaton As is ng, then the input symbol of automaton As is 3“%‘5

[1]

For example, the state corresponding to the vertex is a conflict state because the functional
group described by automaton Ajp, is advancing into the search area at the moment when the
functional group described by automaton As, is performing territorial control.

We will describe the process of synthesizing the graphoid H in accordance with the algorithm
shown in Fig. 1.

In the first iteration, the synthesis of graphoids H and G5 is carried out:
It is assumed that H = G} and Yy = Yg,;
Since there are no state triggers, as Yg N Xg, = &, the operation H = H ® Gy is performed;
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xll/yll

/

x22 / y22

24

Fig. 7. Graphoid H = V(G; ® G3).

Gg'21"

Fig. 8. Graphoid = V(V(G; ® G3) ® G3).

Invalid states, determined by the vertices {qél,qéQ}, {qél,qéb}, {qél,q%Q}, {qél,qa} are ex-
cluded from graphoid H, i.e., the operation H = V H is performed. The resulting graphoid is shown
in Fig. 7, where the vertices ¢ = {q¢}, 1,qu2}, input symbols 2% = {z, 1,3:JG2} and output symbols
Yy = {inl,y]éQ} are defined.
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In the next iteration, the synthesis of graphoids H and Gj is performed:

Since Yg N X, # @ the operation H = H ® G3 is performed;

Invalid vertices {qul,qévQ,q1G3},{qul,qéQ,qg3} are excluded from graphoid H, i.e., the oper-
ation H = VH, is performed. The resulting graphoid is shown in Fig. 8, with vertices ¢t =
{46,960 46}

Thus, the graphoid H corresponds to an automaton that describes the parallel synchronous and
asynchronous functioning of automata A, As, as well as the initialization of state transitions of
automaton As.

In the resulting graphoid H, all interrelated actions of the three functional groups are considered.
Their activities are directed at controlling access to the emergency zone, organizing the search for
victims, and evacuating people and material valuables from the zone.

8. CONCLUSION

The article presents an algebra of graphoids of automata, which allows synthesizing a graphoid
for the general model of automaton functioning. In constructing this algebra, operations on au-
tomata were partially transferred to the graphoids of these automata, and operations were intro-
duced to account for additional domain-specific requirements. An algorithm for synthesizing the
graphoids of automata based on this algebra has been developed, which allows constructing a gen-
eralized model of object functioning independently of the sequence in which they are connected,
due to the commutativity of the operations. A numerical example of synthesizing the graphoid of
an automaton is provided, describing the interrelated actions of three functional groups used in the
event of an emergency. These functional groups carry out control of access to the emergency zone,
organize the search for victims, and evacuate people and material valuables from the zone. As a
result, a mathematical apparatus has been developed, enabling the modeling of joint actions of the
functional groups involved in emergency response. This mathematical apparatus can later be used
in models for assessing the effectiveness of functional group actions and optimizing the selection of
their composition and tactics, by populating it with the contents of the input and output symbols
of the automata.
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