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Abstract—We consider a target control problem of a special form, in which a system of differ-
ential equations includes nonlinear terms depending on state variables. We show that reinforce-
ment learning algorithms such as Proximal Policy Optimization (PPO) can be used to find an
inexact feedback solution. The chosen strategy is further approximated with a piecewise affine
control. Based on the dynamic programming method, an inner estimate of the solvability set is
calculated, as well as a corresponding a priori estimate of the distance between a final trajectory
point and the target set. To do this, we examine an auxiliary problem for a piecewise linear
system with noise and calculate a piecewise quadratic function as an approximate solution of
the Hamilton–Jacobi–Bellman equation.
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1. INTRODUCTION

We consider a target control problem for a nonlinear system of differential equations on a fixed
finite time interval. This problem is closely related to construction of the solvability set containing
all starting positions from which the control synthesis problem can be solved. To approximate this
set, one may use various methods based on analysis of the corresponding differential inclusion [1–3]
or depending on the Hamilton–Jacobi–Bellman (HJB) equation [4–7]. These approaches are appli-
cable to a wide class of nonlinear systems, yet they require large computational costs. Recently,
algorithms based on machine learning have also been developed, making it possible to approximate
solution of the HJB equation with a neural network [8, 9] or to search for the control function
directly [10]. However, the latter do not provide any guaranteed estimates.

This paper proposes to reduce computational complexity of solving the HJB equation by search-
ing for an approximate solution in the class of piecewise quadratic functions defined on a set of
simplices. We develop the ideas introduced in [11–13] and present a method based on piecewise
linearization of the right-hand side of differential equations, considering an auxiliary control prob-
lem for a system with piecewise linear dynamics and bounded noise (linearization error). The
comparison principle [14, 15] allows us to derive equations for the coefficients of the sought-for
value function, whose zero sublevel set is an internal estimate of the solvability set of the original
nonlinear system.

The search for an approximate HJB solution using the above-mentioned method is accompanied
by construction of a suboptimal control strategy. Previously, a control strategy was proposed in the
form of continuous piecewise affine function [13], determined by values at the vertices of the partition
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simplices. In this case, the values at the vertices should be chosen in such a way as to minimize
the derivative of the value function along the trajectory. However, since the constructed estimate
of the value function is not smooth, it is required to use additional heuristics, which increase the
error of the method. In this paper, we demonstrate that results of other algorithms can also be
used as controls at the vertices. In particular, we propose using reinforcement learning [16, 17]. If
control values are chosen based on the output of a neural network model, the resulting estimate of
the value function can take smaller values at the initial time moment. Therefore, it would a priori
guarantee reaching a smaller neighborhood of the target set.

Note that reinforcement learning algorithms also imply construction of a value function, which
is an estimate of the resulting benefit from each possible position (in this case, we are talking about
the distance to the target set at the final moment of time), or its analogues. But even with a
well-chosen control, such an estimate is not reliable and may be inaccurate. At the same time, the
approach indicated in this paper allows any predetermined control strategy to be approximated
by a piecewise affine function, for which the resulting estimate will be guaranteed. This can be
especially useful in case of additional interference, when calculation of trajectories for different
initial points is not sufficient to estimate all possible variants of the system’s behavior.

2. PROBLEM STATEMENT

We consider a system of nonlinear differential equations

ẋ = f(t, x) + g(t, x)u, t ∈ [t0, t1], x ∈ Ω, (1)

where Ω ∈ R
nx is a compact set, large enough to contain all the trajectories of (1) for any t ∈ [t0, t1];

we assume that the boundary of Ω is a polyhedron. The nonlinear vector function f(t, x) and the
matrix function g(t, x) ∈ R

nx×nu are continuous in t and twice continuously differentiable with
respect to x. The interval [t0, t1] is fixed. At every moment of time, the control vector u must
belong to a compact convex set P:

u ∈ P ⊂ R
nu . (2)

The main problem is to construct a continuous feedback control in the form u = u(t, x), which
steers the system (1) from a given point x0 at time t0 to the smallest possible neighborhood of a
compact target set X1 ⊂ Ω at time t1. Let u(·) denote feedback control. Thus,

x(t1; t0, x0)|u(·) ∈ X1 +Bε(0)

must hold, where x(t1; t0, x0)|u(·) is the final point of a trajectory that started at time t0 from the
point x0, closed by control u(·); Bε(0) is a ball of radius ε centered at zero, and the value of ε � 0
must be minimized. We also assume that the target set is representable as X1 = {x∈Ω: φX1(x)� 0},
where φX1(x) is a twice differentiable function.

In addition, it is required to construct the solvability set W(t, t1,X1) [15], that is, the set of all
vectors x ∈ Ω, for each of which there is a control u(·), satisfying the constraint (2) and transferring
the system from position {t, x} (t ∈ [t0, t1]) to the target set: x(t1; t, x)|u(·) ∈ X1. However, since
the task of constructing the exact solvability set is difficult, we limit ourselves to searching for
internal estimates of this set.

3. SYSTEM WITH PIECEWISE LINEAR DYNAMICS

Let n-dimensional simplex [20] with vertices x1, x2, . . . , xn+1 ∈ R
n be the set

Sn =

{
α1x1 + α2x2 + . . .+ αn+1xn+1 : αi � 0,

n+1∑
i=1

αi = 1

}
,
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where the vectors x2−x1, . . . , xn+1−x1 are linearly independent. In this case, a vector of barycen-
tric coordinates α(x) = (α1, . . . , αn+1)

T uniquely defines the position of any point x inside the
simplex. In addition, there is a matrix H̃ [11] such that the barycentric coordinates α(x) are
linearly expressed in terms of x: α = H̃ × (xT , 1)T .

Consider some partition of the Ω set into N simplices Ω(i) such that any two simplices do
not intersect or intersect only along any of their common faces of dimension smaller than nx. In
practice, having an arbitrary set of vertices, one may implement such partition using Delaunay
triangulation [21, 22], which is efficiently computed by constructing a convex hull of points in
(nx + 1)-dimensional space [23].

The superscript (i) further denotes correspondence of a vector, matrix, or function to the sim-

plex Ω(i). In particular, vertices of a simplex are denoted as g
(i)
1 , . . . , g

(i)
nx+1 ∈ R

nx , i = 1, N . Note
that each vertex can belong to several simplices.

In [11–13], a method was proposed to construct a continuous piecewise affine approximation of
the system (1), which substantially uses a partition of the Ω set into simplices. The matrices A(i),
B(i) and vectors f (i) are selected in such a way that the following representation is valid for all
u ∈ P:

f(t, x) + g(t, x)u = A(i)(t)x+B(i)(t)u+ f (i)(t) + v(i)(t, x, u), x ∈ Ω(i), (3)

where v(i) is a local linearization error. This error is bounded and there is an estimate for it based
on decomposition of the functions f(t, x) and g(t, x) according to the Taylor’s formula. Moreover,
this estimate is independent of particular values x ∈ Ω(i) and u ∈ P . Thus, all possible values of v(i)

can be bounded with some ellipsoid Q(i)(t):

Q(i)(t) = E(0, Q(i)(t)) = {x ∈ R
nx : 〈x, (Q(i))−1x〉 � 1}, Q(i) = (Q(i))T > 0. (4)

Remark 1. If system (1) additionally contains an additive term in the form of unknown bounded
function (interference), then it can also be taken into account during piecewise linearization by
scaling the ellipsoids Q(i)(t) and shifting their centers.

It is convenient to consider the extended variable space, where a vector x̃ is obtained by adding
an auxiliary component with a fixed value equal to one: x̃ = (xT , 1)T . Then, based on (3), we
can write the following piecewise linear system of differential equations with autonomous switch-
ing [24, pp. 5–9] in the extended space of variables:

˙̃x = Ã(i)(t)x̃+ B̃(i)(t)u+ C̃v(i), x̃ ∈ Ω(i) × {1}, t ∈ [t0, t1], (5)

Ã(i)(t) =

[
A(i)(t) f (i)(t)
O1×nx 0

]
, B̃(i)(t) =

[
B(i)(t)
O1×nu

]
, C̃ =

[
Inx×nx

O1×nx

]
,

where v(i) is interpreted as interference. We will call an interference acceptable if it is a measurable
function of time and it satisfies the constraint v(i)(t) ∈ Q(i)(t) at each time moment. The index
i = i(x(t)) in formula (5) is a function of system state at time t, however, for the sake of brevity,
we omit the arguments of this function.

4. VALUE FUNCTION

4.1. General Background

Consider an auxiliary value function

V̄ (t, x) = min
u(·)

{φX1(x(t1)) : x(t) = x} , (6)
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where x(·) is a trajectory of the nonlinear system (1), starting at the initial position and closed by
a fixed feedback control u(·). Using the value function, the solvability set is constructed [15] as

W(t, t1,X1) =
{
x ∈ Ω : V̄ (t, x) � 0

}
. (7)

Along with (7), consider a formula for the neighborhood of the solvability set:

Wε(t, t1,X1) =
{
x ∈ Ω : V̄ (t, x) � ε

}
,

Wε(t, t1,X1) =
{
x ∈ Ω | ∃u(·) : φX1(x(t1; t, x)|u(·)) � ε

}
.

At any point of differentiability (t, x), where t < t1, x ∈ Ω, the function V̄ (t, x) satisfies the
backward Hamilton–Jacobi–Bellman equation

min
u∈P

V̄ ′(t, x; (1, (f(t, x) + g(t, x)u)T )T ) = 0, (8)

where V̄ ′(t, x; �) is the derivative of the function V̄ (t, x) at the point (t, x) in the direction � ∈ R
nx+1.

At the final moment of time, the equality V̄ (t1, x) = φX1(x) holds. The function V̄ (t, x) can be
non-differentiable, and hence the solution of (8) must be recognized in a generalized sense [25].
Nevertheless, we can replace the solution V̄ (t, x) with such a piecewise quadratic function that
equation (8) would be fulfilled approximately. This function will be further found based on consid-
eration of piecewise linear system (5).

4.2. Piecewise Quadratic Function

At each vertex g
(i)
l of each simplex Ω(i), consider a function 〈k(i)l (t), x̃〉, which is affine in x.

For each t ∈ [t0, t1], the vector k
(i)
l ∈ R

nx+1 is a vector of unknown coefficients. Then, for each
simplex Ω(i), we can define a matrix of parameters, whose structure corresponds to the set of

vertices g
(i)
1 , . . . , g

(i)
nx+1:

K(i)(t) =
[
k
(i)
1 (t), . . . , k

(i)
nx+1(t)

]
∈ R

(nx+1)×(nx+1).

Consider a piecewise quadratic function

V (i)(t, x̃) = 〈x̃,K(i)(t)H̃(i)x̃〉, x̃ = (xT , 1)T , x ∈ Ω(i). (9)

Equation (9) corresponds to interpolation of the considered affine functions:

V (i)(t, x̃) = 〈x̃,K(i)(t)H̃(i)x̃〉 = 〈(K(i)(t))T x̃, α(i)(x)〉 =
nx+1∑
l=1

α
(i)
l (x)〈k(i)l (t), x̃〉.

Since the function (9) is defined for the extended space of variables x̃ = (xT , 1)T , an arbitrary
piecewise quadratic function defined on a set of simplices can be represented in such form.

We will use piecewise affine controls of the form

u(t, x) = Y (i)(t)H̃(i)x̃ =
nx+1∑
k=1

α
(i)
k (x)y

(i)
k (t) ∈ R

nu , (10)

where the matrix Y (i)(t) ∈ R
nu×(nx+1) consists of column vectors y

(i)
k (t) ∈ P that are the control

values at the vertices of Ω(i). Those values will be chosen later. Note that the values of y
(i)
k (t) cor-

responding to the same vertex in different simplices will coincide, hence the control function u(t, x)
is continuous in x. Due to convexity of P, the condition u(t, x) ∈ P is satisfied.
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Consider the derivative of V (i)(t, x̃) in the direction � = (�t, �x) ∈ R
nx+2:

dV (i)

d�
= �t〈x̃, K̇(i)H̃(i)x̃〉+ 〈�x, [K(i)H̃(i) + (H̃(i))T (K(i))T ]x̃〉. (11)

It was proved in [13] that the following estimate holds for � = (�t, �x)
T , where �t = 1, �x =

Ã(i)x̃+ B̃(i)u+ C̃v(i):

dV (i)

d�
(t, x̃) � 〈x̃, [K̇(i) + Z(i)]H̃(i)x̃〉. (12)

The matrix Z(i) is known and can be expressed in terms of coefficients K(i)(t), coefficients Ã(i)(t),
B̃(i)(t), C̃ of the piecewise linear system (5), and matrices Y (i)(t) that define control values at the
vertices of Ω(i). The obtained estimate is valid for any acceptable interference v(i) ∈ Q(i)(t).

Making K̇(i) + Z(i) to be zero matrix, we obtain the system of matrix differential equations
which describes evolution of V (i)(t, x̃) over time.

K̇(i)(t) + Z(i)(t) = 0, t ∈ [t0, t1], i = 1, N. (13)

Then it follows from (12)–(13) that along any trajectory of the system (5) the derivative of the
function will not increase in each simplex Ω(i). Next, we will show how to modify equations (13)
so that the resulting function V (i)(t, x̃) would be continuous, and therefore the derivative would
not grow even when passing through the simplex boundaries. This can be used to construct a
guaranteed a priori estimate for trajectory’s end point deviation from the target set.

4.3. Boundary Conditions

To solve (13), one has to set boundary conditions at the final time moment t = t1. In turn,
it is necessary to construct a piecewise quadratic upper bound for the function φX1 . Based on
representation (9), matrices K(i)(t1) can be defined. In particular, if the boundary of the set X1

is a second-order hypersurface, then the representation φX1(x) = 〈x̃, K̂x̃〉 is valid for some matrix
K̂ = K̂T . Thus, let the parameter values of V (i)(t1, x̃) be equal to

K(i)(t1) = K̂ × (H̃(i))−1 (14)

in each simplex. In general, for any twice differentiable function φX1 , it is possible to construct a
piecewise affine upper bound [12], which is a special case of piecewise quadratic function and thus
leads to conditions similar to (14). The function V (i)(t, x̃) will be continuous in x over the entire
set Ω× {1} at time t = t1.

4.4. Function Smoothing

Note that solution V (i)(t, x) (9) of the Cauchy problem (13)–(14) can be discontinuous at the
boundaries of simplices. Each column of K(i)(t) defines the coefficients of the piecewise affine

function 〈k(i)l (t), x̃〉 at some vertex gl. However, generally speaking, each such point is a vertex
of several simplices at once. Since matrices Z(i) in (11) are constructed independently for each

simplex, the values of the derivatives k̇
(i)
l (t) are determined by several incompatible conditions.

Thus, the estimate (11) needs to be modified, so that the resulting function V (i)(t, x) would be
continuous. We propose an alternative way to calculate the matrices Z(i) rather than in [13].

Instead of (13), consider a differential equation for each column of the matrix K(i):

k̇
(i)
l (t) + z

(i)
l (t) = 0, t ∈ [t0, t1], i = 1, N, l = 1, nx + 1, (15)
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where z
(i)
l is the corresponding column of the matrix Z(i). Hence the estimate (12) can be rewritten

in the form

dV (i)

d�
(t, x̃) � 〈x̃, [K̇(i) + Z(i)]H̃(i)x̃〉 = 〈x̃, K̇(i)H̃(i)x̃〉+ 〈x̃, Z(i)H̃(i)x̃〉

� 〈x̃, K̇(i)H̃(i)x̃〉+ 〈x̃, Z(i)α(i)(x)〉 = 〈x̃, K̇(i)H̃(i)x̃〉+
nx+1∑
l=1

α
(i)
l (x)〈x̃, z(i)l 〉. (16)

For any fixed t ∈ [t0, t1] and each vertex g
(i)
l , consider an auxiliary linear programming problem

with respect to a new unknown vector ẑ
(i)
l :⎧⎨⎩〈ẑ(i)l , g̃

(i)
l 〉 → min

〈ẑ(i)l , g̃
(j)
k 〉 � 〈z(j)ν(i,l,j), g̃

(j)
k 〉 ∀j : g

(i)
l ∈ Ω(i) ∩ Ω(j), k = 1, nx + 1,

(17)

where ν(i, l, j) denotes a local index of a vertex g
(i)
l ∈ Ω(i) ∩ Ω(j) in the simplex Ω(j).

Using solutions ẑ
(i)
l , we obtain matrices Ẑ(i) in a similar way. Given conditions of the prob-

lem (17) and linearity of the functions under consideration, we can continue the inequality (16):

dV (i)

d�
(t, x̃) � 〈x̃, [K̇(i) + Z(i)]H̃(i)x̃〉 � 〈x̃, K̇(i)H̃(i)x̃〉+

nx+1∑
l=1

α
(i)
l (x)〈x̃, z(i)l 〉

� 〈x̃, K̇(i)H̃(i)x̃〉+
nx+1∑
l=1

α
(i)
l (x)〈x̃, ẑ(i)l 〉 = 〈x̃, [K̇(i) + Ẑ(i)]H̃(i)x̃〉.

Note that solutions of the problems (17) corresponding to the same vertex in different sim-
plices Ω(i) will coincide (if the linear programming problem admits several solutions, they can be
chosen the same). Hence, the piecewise-defined value function (9) obtained by solving the Cauchy
problem {

K̇(i) + Ẑ(i) = 0, i = 1, N, t ∈ [t0, t1]

K(i)(t1) = K̂ × (H̃(i))−1, i = 1, N,
(18)

will be continuous in (t, x̃) throughout the entire domain. The objective function in (17) corresponds
to the values V (i)(t, x̃) at the simplex vertices, and thus it tends to reduce function values at these
points.

5. CONTROL SELECTION

Before solving the problem (18), we need to determine the controls y
(i)
k from (10) at the vertices

of simplices in order to construct matrices Ẑ(i) based on these values. In the previous works [11–13],
they were chosen in such a way that the derivative (11) of V (i)(t, x̃) is minimized in each simplex Ω(i).
However, taking into account the piecewise defined nature of this function, there was ambiguity

in the choice of y
(i)
k . To eliminate it, the controls were additionally adjusted, and this negatively

affected the resulting solution.

In this paper, we demonstrate that the method allows the use of controls obtained on the
basis of alternative approaches, reinforcement learning in particular. As a result, the constructed
approximation of the value function (6) can be more accurate.

Reinforcement learning [16] is a domain of machine learning, where the agent’s behavior is
adjusted by repeated interaction with the environment, depending on the rewards received from it

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 1 2025



ON GUARANTEED ESTIMATE OF DEVIATIONS FROM THE TARGET SET 67

for each action performed. In our task, the agent implements the control strategy u = u(t, x) and
we choose

L(t, x) =
{
0, t < t1

−d2(x,X1), t = t1,
(19)

as a reward function. Here d(x,X1) is the distance between a point x and a set X1.

Proximal Policy Optimization (PPO) is one of the reinforcement learning algorithms in which
the control strategy is represented using a neural network, and its weights are updated by gradient
descent while optimizing some objective function. The objective is to maximize the cumulative
reward at the end of the experiment; however, this function is described by a more complex ex-
pression [17] to ensure a stable learning process.

The advantage of the PPO algorithm is possibility of its application to continuous dynamics,
including the system (1). Some other algorithms also have this property, for example, DDPG [18]
and SAC [19]. They can also be used in the proposed approach. However, they showed lower
accuracy in the examples discussed below.

Let the set P admit finite-dimensional parametrization. In this case, a vector u ∈ P is defined by
parameters θ ∈ R

r, where θi ∈ [θmin
i , θmax

i ], i = 1, r. The goal is to determine these parameters for
each fixed position (t, x). However, since the PPO algorithm is designed for stochastic strategies, θ
is usually assumed to be a random vector with a multidimensional normal distribution θ ∼ N (μ,Σ)
with a diagonal covariance matrix. When using the algorithm, at first a neural network is trained,
which predicts the parameters of this distribution, and then realizations of the corresponding
random vector are generated during the calculation of values u(t, x). Nevertheless, having a trained
neural network, it is easy to obtain deterministic control. Instead of generating a random vector,
one can take the corresponding expected value: θ = μ.

Note that the values of θi are subject to interval constraints, while the support of a normal
random vector is the entire space R

r. In order to meet the requirements, the parameter values
are “truncated” [26]. New values are obtained using the formula θ̃i = min{θmax

i ,max{θi, θmin
i }},

although other transformations are allowed. In addition, distributions with a bounded support [27]
can be used for the specified random variables.

Such deterministic controls, which are based on a neural network model and satisfy the con-
straint (2), are further denoted as û(t, x). The resulting piecewise affine control used in this work
is determined by formula (10):

u(t, x) =
nx+1∑
k=1

α
(i)
k (x)û(t, g

(i)
k ), x ∈ Ω(i). (20)

The function û(t, x) will be continuous in (t, x) due to the structure of a neural network. It
also follows that as the diameter of the partition of Ω into simplices tends to zero, the resulting
control (20) will converge pointwise to û(t, x).

6. MAIN RESULT

The constructions above allow us to prove the following theorem.

Theorem 1. Let the matrix functions K(i)(t) ∈ R
(nx+1)×(nx+1) be a solution of the Cauchy prob-

lem (18). Let V (t, x̃) be a continuous piecewise quadratic function defined on [t0, t1]× Ω× {1}
and determined by the equation V (i)(t, x̃) = 〈x̃,K(i)(t)H̃(i)x̃〉 in each simplex Ω(i). Then the set

W int
ε (t0) =

{
x ∈ Ω

∣∣∣ V (t0, x̃) � ε
}

(assuming that it is not empty) is an internal estimate of the

solvability set of the original nonlinear system (1), i.e.

W int
ε (t0) ⊆ Wε(t0, t1,X1).
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The proof is based on trajectory analysis of the nonlinear system (1), closed by control (10).

However, it does not depend on the method of finding the vectors y
(i)
k (t) ∈ P at the vertices of the

simplices. The proof follows the scheme presented in [13].

7. EXAMPLES

7.1. Nonlinear System

Consider the motion of a pendulum on a trolley, taking the frictional force into account [28].
It is described by the system of equations{

ẋ1 = x2

ẋ2 = −w2 sin(x1)− 2γx2 − w2 cos(x1)× u,
(21)

where ω and γ are parameters, x1 and x2 are the angle of pendulum deflection and the angular
velocity, respectively. The control u denotes acceleration of the cart. We consider ω = 1, γ = 0.1.
It is required to steer the system from the initial position (−0.3, 0.6)T at time t0 = 0 to a small
neighborhood of the origin at time t1 = 1. The control is bounded by u ∈ [−1, 1].

For neural networks used in the PPO algorithm, we chose a two-layer perceptron [29] with
activation function tanh (x) due to its simplicity. During training, 10 000 test trajectories of the
system (21) were generated, starting from various random points x0 ∈ Ω at time t0. The control
strategy û(t, x) was updated based on the penalties (19). Figure 1 shows the trajectory obtained
using the PPO algorithm without any additional modifications. The distance between the end
point of the trajectory and the origin is 0.027.

To calculate the piecewise quadratic function (9), at first we fixed the vertices gk ∈ R
2 located

on a rectangular grid with sides of length Δ = 0.1. These vertices were used to partition the set
Ω = [−1, 1] × [−1, 1] into N = 800 equal simplices. Figure 2 shows the results obtained using the
control selection algorithm described in [13]. The dotted line indicates the boundary of the set
which a trajectory of the system is a priori guaranteed to hit. The distance between x(t1) and the
target set is 0.043.

Fig. 1. The trajectory based on control û(t, x). Fig. 2. The trajectory based on control strategy
described in [13].
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Fig. 3. The trajectory based on approximation (20)
of neural network control û(t, x).

Fig. 4. Neural network control û(t, x(t))
and the resulting control u(t, x(t)).

Fig. 5. The boundary of solvability set at t = t0 and trajectories
of the system (21) closed by the resulting control u(t, x).

Figure 3 shows the trajectory obtained by the combination of methods described in the current
work. The same partition into simplices is used. The distance from the origin in this case is 0.023.
The change in error is explained by the difference between the original neural network control û(t, x)
and its approximation (20). Figure 4 shows the controls corresponding to the trajectories shown in
Figs. 1 and 3. The a priori error is less for the presented method than for the algorithm [13]. This
example confirms that the a priori estimate obtained from the value function approximation (9) is
guaranteed in each case.

In Fig. 5, continuous lines indicate the trajectories obtained by the proposed method when
starting from various starting points. Arrows indicate the direction of movement along the trajec-
tories. In addition, the dotted line stands for the boundary of the solvability set using the class
of piecewise continuous program controls, calculated on the basis of the Pontryagin’s maximum
principle [30, pp. 336–344].
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7.2. Linear System

To better understand accuracy of the proposed approach, consider a linear system

ẋ1 = x2, ẋ2 = u (22)

on the segment t ∈ [0, 1]. In this case, the method of piecewise linearization described above is not
needed, however, this system is well studied in literature [30]. Let the control satisfy u ∈ [−2, 2]. It
is required to transfer the system to the origin at time t = 1. Then it can be proved that the point
x0 = (0.5, 0)T lies on the boundary of the solvability set at the moment t = 0, and it is achieved by
piecewise constant control u∗(t) = 2× sgn(t− 0.5).

A neural network model of the same structure as in the previous example was chosen for numer-
ical experiments. The model was trained on a personal computer for one hour, and then piecewise
quadratic functions of the form (9) were constructed for different diameters of simplices Ω(i). We
consider the set Ω = [−1.5, 1.5] × [−1.5, 1.5].

Figure 6 shows the resulting trajectory and the a priori estimate of hitting the origin from the
point x0 when step of the rectangular grid was Δ = 0.25. This corresponds to the division into 288
simplices shown in the figure. Figure 7 shows the corresponding control u(t, x(t)) of the form (20).
Figure 8 shows the solvability set calculated on the basis of the Pontryagin’s maximum principle
as well as the trajectories obtained by the proposed method when starting from various points.

Figure 9 shows dependencies of the a priori and a posteriori errors on the number of simplices in
the partition Ω =

⋃N
i=1Ω

(i) for the same starting point x0 = (0.5, 0)T . As the partition diameter
decreases, the a posteriori error converges to 0.104, which corresponds to the accuracy of the original
neural network control û(t, x). Note that this accuracy can be improved by considering other neural
network models, which can require more parameters. In addition, it follows from Fig. 9 that the
a priori error decreases at first, yet at some point it begins to increase again. This increase is
explained by imperfection of auxiliary optimization problems (17): their solutions in neighboring
vertices can differ significantly from each other, and it affects the stability of the method when
using a small partition diameter. This problem can be eliminated by replacing the objective in

Fig. 6. Trajectory of the system (22) and a priori
estimate of hitting the target point.

Fig. 7. The resulting control u(t, x(t)) for the
system (22), and the optimal control u∗(t).
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Fig. 8. Boundary of the solvability set at t = t0 and trajectories of the system (22)
when using the resulting control u(t, x).

Fig. 9. Deviation from the target point x1 = (0, 0)T depending on the number of partition simplices.

Fig. 10. Computation time of value function approximation for a fixed control strategy û(t, x).
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problems (17) or by introducing additional “regularizing” terms into the system (18), which were
proposed in [11].

Figure 10 shows computation times of the value function estimate depending on the number
of simplices, using a fixed neural network strategy û(t, x). Time costs increase linearly as the
number of simplices becomes greater. If this number is not too large, the computation time is
small compared to the training time of a neural network.

8. CONCLUSION

The formulas presented in this paper make it possible to obtain a feedback control strategy that
solves the problem approximately, as well as a piecewise affine approximation of this strategy on a
set of simplices. The latter is used to construct a continuous piecewise quadratic function which
defines an internal estimate of the solvability set in a target control problem. For the obtained
piecewise affine control, a guaranteed a priori error estimate of hitting the target set is valid. The
proposed approach can be used in solving control problems for nonlinear systems in case of a small
state space dimension.
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