The Rate of Convergence to the Limit of the Probability of Encountering an Accidental Similarity in the Presence of Counter Examples


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper refines the main result of [1], where the limit \( - {e^{ - a}} - a{e^{ - a}}\left[ {1 - {e^{ - c\sqrt a }}} \right]\) was proved for the probability of encountering an accidental similarity between two parent examples without \(m = c\sqrt n \) counter examples if each parent example and counter example is described by a series of \(\sqrt n \) independent Bernoulli trials with success probability \(p = \sqrt {a/n} \). In this paper, we prove that the rate of convergence to the limit is proportional to \({n^{\frac{1}{2}}}\).

Sobre autores

D. Vinogradov

Federal Research Center Computer Science and Control

Autor responsável pela correspondência
Email: vinogradov.d.w@gmail.com
Rússia, Moscow, 119333

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2018