The Rate of Convergence to the Limit of the Probability of Encountering an Accidental Similarity in the Presence of Counter Examples
- Autores: Vinogradov D.V.1
-
Afiliações:
- Federal Research Center Computer Science and Control
- Edição: Volume 52, Nº 1 (2018)
- Páginas: 35-37
- Seção: Information Analysis
- URL: https://journals.rcsi.science/0005-1055/article/view/150204
- DOI: https://doi.org/10.3103/S0005105518010090
- ID: 150204
Citar
Resumo
This paper refines the main result of [1], where the limit \( - {e^{ - a}} - a{e^{ - a}}\left[ {1 - {e^{ - c\sqrt a }}} \right]\) was proved for the probability of encountering an accidental similarity between two parent examples without \(m = c\sqrt n \) counter examples if each parent example and counter example is described by a series of \(\sqrt n \) independent Bernoulli trials with success probability \(p = \sqrt {a/n} \). In this paper, we prove that the rate of convergence to the limit is proportional to \({n^{\frac{1}{2}}}\).
Palavras-chave
Sobre autores
D. Vinogradov
Federal Research Center Computer Science and Control
Autor responsável pela correspondência
Email: vinogradov.d.w@gmail.com
Rússia, Moscow, 119333
Arquivos suplementares
