Acesso aberto Acesso aberto  Acesso é fechado Acesso está concedido  Acesso é fechado Somente assinantes

Volume 53, Nº 2 (2017)

Article

Nodulation competitiveness of nodule bacteria: Genetic control and adaptive significance: Review

Onishchuk O., Vorobyov N., Provorov N.

Resumo

The most recent data on the system of cmp (competitiveness) genes that determine the nodulation competitiveness of rhizobial strains, i.e., the ability to compete for nodule formation in leguminous plants, is analyzed. Three genetic approaches for the construction of economically valuable strains of rhizobia are proposed: the amplification of positive regulators of competitiveness, the inactivation of the negative regulators of this trait, and the introduction of efficient competitiveness factors into strains capable of active nitrogen fixation.

Applied Biochemistry and Microbiology. 2017;53(2):131-139
pages 131-139 views

Immunity of a leguminous plant infected by nodular bacteria Rhizobium spp. F.: Review

Glyan’ko A., Ischenko A.

Resumo

Recent studies of the immune system of leguminous plants infected with nodular bacteria (rhizobia) are summarized. The possibility of blocking the invasion of rhizobia into plant organs not affected by the primary infection is discussed. The concept of local and systemic resistance of the leguminous plant to rhizobial infection is introduced. The Nod factors of rhizobia are considered, as well as the plant receptors that interact with these factors upon the formation of symbiosis of the plant and bacteria. The role of bacterial surface exopolysaccharides in the suppression of the protective system of the plants is discussed. The innate immunity of leguminous plant cells is assumed to affect the formation and functioning of the symbiosis of the plant and the bacteria.

Applied Biochemistry and Microbiology. 2017;53(2):140-148
pages 140-148 views

Flavonoid oxidation kinetics in aqueous and aqueous organic media in the presence of peroxidase, tyrosynase, and hemoglobin

Barsukova M., Tokareva A., Buslova T., Malinina L., Veselova I., Shekhovtsova T.

Resumo

The kinetics of oxidation reactions of flavonoids, quercetin, dihydroquercetin, and epicatechin has been studied in the presence of biocatalysts of different natures: horseradish peroxidase, mushroom tyrosinase, and hemoglobin from bull blood. Comparison of the kinetic parameters of the oxidation reaction showed that peroxidase appeared to be the most effective biocatalyst in these processes. The specificity of the enzyme for quercetin increased with increasing the polarity of the solvent in a series of ethanol–acetonitrile–dimethyl sulfoxide.

Applied Biochemistry and Microbiology. 2017;53(2):149-156
pages 149-156 views

Peroxidase activity of octaheme nitrite reductases from bacteria of the Thioalkalivibrio genus

Tikhonova T., Slutskaya E., Popov V.

Resumo

Closely related penta- and octaheme nitrite reductases catalyze the reduction of nitrite, nitric oxide, and hydroxylamine to ammonium and of sulfite to sulfide. NrfA pentaheme nitrite reductase plays the key role in anaerobic nitrate respiration and the protection of bacterial cells from stresses caused by nitrogen oxides and hydrogen peroxide. Octaheme nitrite reductases from bacteria of the Thioalkalivibrio genus are less studied, and their function in the cell is unknown. In order to estimate the possible role of octaheme nitrite reductases in the cell resistance to oxidative stress, the peroxidase activity of the enzyme from T. nitratireducens (TvNiR) has been studied in detail. Comparative analysis of the active site structure of TvNiR and cytochrome c peroxidases has shown some common features, such as a five-coordinated catalytic heme and identical catalytic residues in active sites. A model of the possible productive binding of peroxide at the active site of TvNiR has been proposed. The peroxidase activity has been measured for TvNiR hexamers and trimers under different conditions (pH, buffers, the addition of CaCl2 and EDTA). The maximum peroxidase activity of TvNiR with ABTS as a substrate (kcat = 17 s–1; kcat/Km = 855 mM–1 s–1) has been 100–300 times lower than the activity of natural peroxidases. The different activities of TvNiR trimers and hexamers indicate that the rate-limiting stage of the reaction is not the catalytic event at the active site but the electron transfer along the heme c electron-transport chain.

Applied Biochemistry and Microbiology. 2017;53(2):157-164
pages 157-164 views

PEGylated recombinant L-asparaginase from Erwinia carotovora: Production, properties, and potential applications

Melik-Nubarov N., Grozdova I., Lomakina G., Pokrovskaya M., Pokrovski V., Aleksandrova S., Abakumova O., Podobed O., Grishin D., Sokolov N.

Resumo

N-hydroxysuccinimide ester of monomethoxy polyethylene glycol hemisuccinate was synthesized. It acylated amino groups in a molecule of recombinant L-asparaginase from Erwinia carotovora. A method of L-asparaginase modification by the obtained activated polyethylene glycol derivative was developed. The best results were produced by modification of the enzyme with a 25-fold excess of reagent relative to the enzyme tetramer. The modified L-asparaginase was isolated from the reaction mixture by gel filtration on Sepharose CL-6B. The purified bioconjugate did not contain PEG unbound to the protein, demonstrated high catalytic activity, and exhibited antiproliferative action on cell cultures.

Applied Biochemistry and Microbiology. 2017;53(2):165-172
pages 165-172 views

Proteomic analysis of contaminants in recombinant membrane hemeproteins expressed in E. coli and isolated by metal affinity chromatography

Yantsevich A., Dzichenka Y., Ivanchik A., Shapiro M., Trawkina M., Shkel T., Gilep A., Sergeev G., Usanov S.

Resumo

Contaminating proteins have been identified by “shotgun” proteomic analysis in 14 recombinant preparations of human membrane heme- and flavoproteins expressed in Escherichia coli and purified by immobilized metal ion affinity chromatography. Immobilized metal ion affinity chromatography of ten proteins was performed on Ni2+-NTA-sepharose 6B, and the remaining four proteins were purified by ligand affinity chromatography on 2',5'-ADP-sepharose 4B. Proteomic analysis allowed to detect 50 protein impurities from E. coli. The most common contaminant was Elongation factor Tu2. It is characterized by a large dipole moment and a cluster arrangement of acidic amino acid residues that mediate the specific interaction with the sorbent. Peptidyl prolyl-cis-trans isomerase SlyD, glutamine-fructose-6-phosphate aminotransferase, and catalase HPII that contained repeating HxH, QxQ, and RxR fragments capable of specific interaction with the sorbent were identified among the protein contaminants as well. GroL/GroS chaperonins were probably copurified due to the formation of complexes with the target proteins. The Ni2+ cations leakage from the sorbent during lead to formation of free carboxyl groups that is the reason of cation exchanger properties of the sorbent. This was the putative reason for the copurification of basic proteins, such as the ribosomal proteins of E. coli and the widely occurring uncharacterized protein YqjD. The results of the analysis revealed variation in the contaminant composition related to the type of protein expressed. This is probably related to the reaction of E. coli cell proteome to the expression of a foreign protein. We concluded that the nature of the protein contaminants in a preparation of a recombinant protein purified by immobilized metal ion affinity chromatography on a certain sorbent could be predicted if information on the host cell proteome were available.

Applied Biochemistry and Microbiology. 2017;53(2):173-186
pages 173-186 views

Novel biocatalyst for productions of S-(-)-2-[6-benzyloxy -2,5,7,8-tetramethylchroman -2-yl] ethanol—precursor of natural α-tocols

Petukhova N., Kon’shina I., Spivak A., Odinokov V., Zorin V.

Resumo

A novel promising strain of actinobacteria Rhodococcus sp. 77-32 was identified. Its acetonetreated biomass the could be used as a biocatalyst for production of S-(-)-2-[6-benzyloxy-2,5,7,8-tetramethylchroman-2-yl] ethanol (S-BCE), a precursor of natural α-tocols. It was established that a reaction of enantioselective hydrolysis of racemic (±)-2-(2-acetoxyethyl)-6-benzyloxy-2,5,7,8-tetramethylchroman (BCEA) occurred in the phosphate buffer–acetone system, resulting in enrichment of the residual substrate by S-enantiomer (S-(+)-2-(2-acetoxyethyl)-6-benzyloxy-2,5,7,8-tetramethylchroman, S-BCEA). It was shown that the hydrolysis was accompanied by stereoinversion of the formed product, R-(+)-2-[6-benzyloxy-2,5,7,8-tetramethylchroman-2-yl] ethanol (R-BCE), into the S-BCE. The transformation conditions (acetone content, acidity, temperature, reaction duration) were optimized, providing simultaneous production of optically pure S-BCE and S-BCEA with an almost quantitative yield.

Applied Biochemistry and Microbiology. 2017;53(2):187-193
pages 187-193 views

Functionality of Metdi5511gene in Methylobacterium dichloromethanicum DM4

Firsova Y., Torgonskaya M., Trotsenko Y.

Resumo

A knockout mutant of Methylobacterium dichloromethanicum DM4 with an inactivated gene of a putative transcription regulator METDI5511 (ΔMETDI5511) has been obtained. The expression of this gene increases many times when the strain is grown on dichloromethane compared to methanol. The mutant had a low growth rate on dichloromethane as compared with the original strain and was found to be more sensitive to influences of various types of stress (oxidative, osmotic stress, heat, and drying). The cells were stained with Fluorescent Brightener 28 (Calcofluor white), and the intensity of their fluorescence showed that the ΔMETDI5511 mutant had significantly increased numbers of surface polysaccharides with β-1,3 and β-1,4-glycoside bonds. The results indicate that the METDI5511 gene is involved in the regulation of surface polysaccharides that play an important role in adaptation of cells to growth on dichloromethane.

Applied Biochemistry and Microbiology. 2017;53(2):194-200
pages 194-200 views

The new bacterial strain Paenibacillus sp. IB-1: A producer of exopolysaccharide and biologically active substances with phytohormonal and antifungal activities

Bakaeva M., Chetverikov S., Korshunova T., Loginov O.

Resumo

The bacterial strain IB-1, which exhibits antagonism towards phytopathogens and stimulates the growth of agricultural plants, was isolated from the soil. Analysis of the cultural, morphological, physiological, and biochemical features and nucleotide sequences of the genes 16S rRNA and gyrB, as well as the fatty acid composition, made it possible to attribute the strain IB-1 to the genus Paenibacillus; however, the results did not provide an unambiguous conclusion on its species. The strain Paenibacillus sp. IB-1 possesses nitrogenase activity, the ability to synthesize indoleacetic acid and cytokinin-like compounds, and antagonistic activity towards phytopathogenic fungi, which indicates prospects for its use as a biological product for agricultural purposes. A high-viscous exopolysaccharide was isolated from the cultural fluid of Paenibacillus sp. IB-1. Based on the data from IR and NMR spectroscopy, it was shown to be a heteropolymer comprised of one to four linked α-L-guluronic acid and β-D-mannuronic acid residues. The exopolysaccharide was successfully tested as an adhesive for presowing treatment of barley and wheat seeds with biofungicides.

Applied Biochemistry and Microbiology. 2017;53(2):201-208
pages 201-208 views

Aerobic degradation of 2,4-dichlorophenoxyacetic acid and other chlorophenols by Pseudomonas strains indigenous to contaminated soil in South Africa: Growth kinetics and degradation pathway

Olaniran A., Singh L., Kumar A., Mokoena P., Pillay B.

Resumo

Three indigenous pseudomonads, Pseudomonas putida DLL-E4, Pseudomonas reactans and Pseudomonas fluorescens, were isolated from chlorophenol-contaminated soil samples collected from a sawmill located in Durban (South Africa). The obtained isolates were tested for their ability to degrade chlorophenolic compounds: 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) in batch cultures. The isolates were found to effectively degrade up to 99.5, 98.4 and 94.0% with a degradation rate in the range of 0.67–0.99 (2,4-D), 0.57–0.93 (2,4-DCP) and 0.30–0.39 (2,4,6-TCP) mgL–1 day–1 for 2,4-D; 2,4-DCP and 2,4,6-TCP, respectively. The degradation kinetics model revealed that these organisms could tolerate up to 600 mg/L of 2,4-DCP. Catechol 2,3-dioxygenase activity detected in the crude cell lysates of P. putida DLL-E4 and P. reactans was 21.9- and 37.6-fold higher than catechol 1,2-dioxygenase activity assayed, suggesting a meta-pathway for chlorophenol degradation by these organisms. This is also supported by the generally high expression of C23O gene (involved in meta-pathway) relative to tfdC gene (involved in ortho-pathway) expression. Results of this study will be helpful in the exploitation of these organisms and/or their enzymes in bioremediation strategies for chlorophenol-polluted environment.

Applied Biochemistry and Microbiology. 2017;53(2):209-216
pages 209-216 views

Synthesis of L-lactate oxidaze in yeast Yarrowia lipolytica during submerged cultivation

Biryukova E., Arinbasarova A., Medentsev A.

Resumo

The biosynthesis of L-lactate oxidase in the Yarrowia lipolytica yeast during submerged cultivation in laboratory bioreactors ANKUM-2M has been studied. It has been shown under optimal conditions of yeast cultivation with L-lactate that 24.5 U/L enzyme accumulated in the medium and the yield was 2.0 U/(L h). An increase in the biosynthesis of L-lactate oxidase to 75 U/L and the yield to 3.2 U/(L h) was achieved in the medium with L-lactate (1%) and glucose (2%). The enzyme was purified 251 times to homogeneity by hydrophobic and ion exchange chromatography state with a yield of 45% and a specific activity of 55.3 U/mg. Techniques of gel filtration and denaturing electrophoresis showed that L-lactate oxidase from Y. lipolytica is a tetramer with a molecular mass of 200–230 kDa. The enzyme showed a strict specificity to L-lactate and did not oxidize fumarate, pyruvate, succinate, ascorbate, dihydroxyacetone, glycolate, D-lactate, D, L-2-hydroxybutyrate and D, L-alanine or D-serine.

Applied Biochemistry and Microbiology. 2017;53(2):217-221
pages 217-221 views

Discoloration of the azo dye Congo Red by manganese-dependent peroxidase from Pleurotus sajor caju

Yehia R., Rodriguez-Couto S.

Resumo

This paper describes the production of ligninolytic enzymes by the white-rot fungus Pleurotus sajor caju under solid-state fermentation conditions using a cost-effective medium consisting of agro-industrial wastes. From the different agro-industrial wastes tested (i.e. orange, banana, mango and cantaloupe peels), banana peels led to the highest manganese-dependent peroxidase (MnP) activity (6.3 U/mL on the 10 day). MnP from banana peel cultures was purified and applied to the discoloration of the azo dye Congo Red (CR). The optimum temperature, pH and enzyme concentration for maximum discoloration (i.e. 95% in 1 h) were found to be 35°C, 4.0, and 1.4 U/mL, respectively. In addition, the phytotoxicity (with respect to Sorghum vulgare and Phaseolus radiatus seeds) of CR was considerably reduced after the treatment of plant material with MnP produced by P. sajor caju. The products obtained after discoloration of CR were characterized using GC/MS as 8-amino naphthol 3-sulfonic acid, 3-hydroperoxy 8-nitrosonaphthol, p-p'-dihydroxybiphenyl. Therefore, this approach holds promise for the production and application of MnP from P. sajor caju on a larger scale.

Applied Biochemistry and Microbiology. 2017;53(2):222-229
pages 222-229 views

Autoclaved mycelium induces efficiently the production of hydrolytic enzymes for protoplast preparation of autologous fungus

Aloulou-Abdelkefi M., Trigui-Lahiani H., Gargouri A.

Resumo

The production of hydrolytic enzymes by the mutant Trichoderma reesei Rut-C30 when cultivated in the presence of various carbon sources: glucose, wheat bran and autoclaved mycelium of Penicillium occitanis CT1 has been studied. Glucose was shown to repress all studied hydrolases, 3% of either wheat bran or autoclaved cell walls led to high titers of enzymes, and were favorably comparable to commercial lysing enzymes (LE). The lysing enzyme cocktail obtained when T. reesei Rut-C30 was cultivated in the presence of autoclaved P. occitanis CT1 mycelia appeared to be a most effective for P. occitanis CT1 protoplast formation. Maximal yield of protoplasts reached 13 × 106 protoplasts/mL while commercial LE preparation released only 4 × 106 protoplasts/mL. The protoplast yield was affected also by the osmotic stabilizer, with KCl giving the best results. Our results suggest that to achieve the best protoplastization rate, the enzyme preparation should be obtained following induction by the autoclaved mycelium of the autologous fungus.

Applied Biochemistry and Microbiology. 2017;53(2):230-236
pages 230-236 views

Content of salicylic and jasmonic acids in pea roots (Pisum sativum L.) at the initial stage of symbiotic or pathogenic interaction with bacteria of the family Rhizobiaceae

Rudikovskaya E., Akimova G., Rudikovskii A., Katysheva N., Dudareva L.

Resumo

A change in the contents of endogenous salicylic and jasmonic acids in the roots of the host plant at the preinfectious stage of interaction with symbiotic (Rhizobium leguminosarum) and pathogenic (Agrobacterium rizogenes) bacteria belonging for to the family Rhizobiaceae was studied. It was found that the jasmonic acid content increased 1.5–2 times 5 min after inoculation with these bacterial species. It was shown that dynamics of the change in the JA and SA contents depends on the type of infection. Thus, the JA content decreased in the case of pathogenesis, while the SA content increased. At the same time, an increased JA content was observed during symbiosis. The observed regularities could indicate the presence of different strategies of hormonal regulation for interaction with symbiotic and pathogenic bacteria belonging to the family Rhizobiaceae in peas plants.

Applied Biochemistry and Microbiology. 2017;53(2):237-241
pages 237-241 views

Methane production by anaerobic digestion of organic waste from vegetable processing facilities

Gladchenko M., Kovalev D., Kovalev A., Litti Y., Nozhevnikova A.

Resumo

The article concerns converting waste from vegetable processing facilities into methane in anaerobic reactors with a small amount of inoculum (8.4%). Anaerobic digestion of vegetable waste with a high content of organic acids and carbohydrates makes it possible to achieve a methanogenesis productivity of 273–436 L CH4/kg of volatile solidis, which is comparable to or higher than the productivity of such reactors in the world (according to the literature). The contents of ammonia nitrogen and soluble phosphorus in the form of on undiluted substrate basis in the digested vegetable wastes ranged from 3.39 to 5.06 and from 0.78 to 1.03 g/L respectively. Thus, mineralized vegetable waste can be used as an organic fertilizer with a high nutrient content. The results show the feasibility of the technology of conversion of organic waste from vegetable processing facilities into methane and organic fertilizer in anaerobic fermenters (digesters).

Applied Biochemistry and Microbiology. 2017;53(2):242-249
pages 242-249 views

Characterization of bacterial communities in anode microbial fuel cells fed with glucose, propyl alcohol and methanol

Zhang S., Qiu C., Fang C., Ge Q., Hui Y., Han B., Pang S.

Resumo

Bacterial communities in anode microbial fuel cells (MFC) obtained from anaerobic digester sludge in a municipal wastewater treatment plant (Nanjing, China) were investigated. Glucose, propyl alcohol and methanol were used as sole carbon source in two-chamber MFC. The results showed that a reproducible cycle of power production can be formed in MFC fed with 3 substrates and glucose-fed MFC had the highest peak power density of 1499 ± 33 mW/m3, followed by methanol- (1264 ± 47 mW/m3) and propyl alcohol-fed MFC (1192 ± 36 mW/m3). Firmicutes, Bacteroidetes, Verrucomicrobia, Proteobacteria, Synergistetes and Armatimonadetes were dominant phyla in 3 MFC. Firmicutes was the most dominant phylum in glucose-fed MFC samples and Bacteroidetes prevailed in methanol- and propyl alcohol-fed MFC. These data indicate that propyl alcohol and methanol along with glucose can be used as substrates of MFC.

Applied Biochemistry and Microbiology. 2017;53(2):250-257
pages 250-257 views

Effect of lipopolysaccharide O-side chains on the adhesiveness of Yersinia pseudotuberculosis to J774 macrophages as revealed by optical tweezers

Byvalov A., Kononenko V., Konyshev I.

Resumo

A method has been developed for the quantitative estimation of the binding force of a model microsphere with a eukaryocyte based on the optical trap in order to study the molecular mechanism of adhesion between an individual bacterium and a host cell. The substantial role of LPS O-side chains in the adhesiveness of Yersinia pseudotuberculosis 1b to J774 macrophages has been revealed with the use of a set of microspheres functionalized with lipopolysaccharide (LPS) preparations and antibodies with different specificities. The results indicate the significance of the O-antigen as a pathogenicity factor of Y. pseudotuberculosis in colonization of a macroorganism. The developed methodical approaches can be applied to the study of molecular mechanisms of the pathogenesis of pseudotuberculosis and other infectious diseases to improve antiepidemic service.

Applied Biochemistry and Microbiology. 2017;53(2):258-266
pages 258-266 views

Competition between redox mediator and oxygen in the microbial fuel cell

Alferov S., Vozchikova S., Arlyapov V., Alferov V., Reshetilov A.

Resumo

The maximal rates and effective constants of 2,6-dichlorphenolindophenol and oxygen reduction by bacterim Gluconobacter oxydans in bacterial fuel cells under different conditions were evaluated. In an open-circuit mode, the rate of 2,6-dichlorphenolindophenol reduction coupled with ethanol oxidation under oxygen and nirogen atmospheres were 1.0 and 1.1 μM s–1 g–1, respectively. In closed-circuit mode, these values were 0.4 and 0.44 μM s–1 g–1, respectively. The initial rate of mediator reduction with the use of membrane fractions of bacteria in oxygen and nitrogen atmospheres in open-circuit mode were 6.3 and 6.9 μM s–1 g–1, whereas these values in closed-circuit mode comprised 2.2 and 2.4 μM s–1 g–1, respectively. The oxygen reduction rates in the presence and absence of 2,6-dichlorphenolindophenol were 0.31 and 0.32 μM s–1 g–1, respectively. The data obtained in this work demonstrated independent electron transfer from bacterial redox centers to the mediator and the absence of competition between the redox mediator and oxygen. The results can make it possible to reduce costs of microbial fuel cells based on activity of acetic acid bacteria G. oxydans.

Applied Biochemistry and Microbiology. 2017;53(2):267-272
pages 267-272 views