Some Absolute Properties of A-Computable Numberings


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For an arbitrary set A of natural numbers, we prove the following statements: every finite family of A-computable sets containing a least element under inclusion has an Acomputable universal numbering; every infinite A-computable family of total functions has (up to A-equivalence) either one A-computable Friedberg numbering or infinitely many such numberings; every A-computable family of total functions which contains a limit function has no A-computable universal numberings, even with respect to Areducibility.

作者简介

S. Badaev

Al-Farabi Kazakh National University

编辑信件的主要联系方式.
Email: Serikzhan.Badaev@kaznu.kz
哈萨克斯坦, Al-Farabi Ave. 71, Alma-Ata, 050040

A. Issakhov

Al-Farabi Kazakh National University; Kazkh-British Technical University

编辑信件的主要联系方式.
Email: asylissakhov@gmail.com
哈萨克斯坦, Al-Farabi Ave. 71, Alma-Ata, 050040; ul. Tole bi 59, Alma-Ata, 050000

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media, LLC, part of Springer Nature, 2018