Algebraic Sets in a Finitely Generated 2-Step Solvable Rigid Pro-p-Group


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A 2-step solvable pro-p-group G is said to be rigid if it contains a normal series of the form G = G1> G2> G3 = 1 such that the factor group A = G/G2is torsionfree Abelian, and the subgroup G2is also Abelian and is torsion-free as apA-module, wherepA is the group algebra of the group A over the ring of p-adic integers. For instance, free metabelian pro-p-groups of rank ≥ 2 are rigid. We give a description of algebraic sets in an arbitrary finitely generated 2-step solvable rigid pro-p-group G, i.e., sets defined by systems of equations in one variable with coefficients in G.

作者简介

N. Romanovskii

Sobolev Institute of Mathematics; Novosibirsk State University

编辑信件的主要联系方式.
Email: rmnvski@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090

补充文件

附件文件
动作
1. JATS XML

版权所有 © Springer Science+Business Media New York, 2016