Algebraic Sets in a Finitely Generated 2-Step Solvable Rigid Pro-p-Group
- 作者: Romanovskii N.S.1,2
-
隶属关系:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- 期: 卷 54, 编号 6 (2016)
- 页面: 478-488
- 栏目: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/233962
- DOI: https://doi.org/10.1007/s10469-016-9367-8
- ID: 233962
如何引用文章
详细
A 2-step solvable pro-p-group G is said to be rigid if it contains a normal series of the form G = G1> G2> G3 = 1 such that the factor group A = G/G2is torsionfree Abelian, and the subgroup G2is also Abelian and is torsion-free as a ℤpA-module, where ℤpA is the group algebra of the group A over the ring of p-adic integers. For instance, free metabelian pro-p-groups of rank ≥ 2 are rigid. We give a description of algebraic sets in an arbitrary finitely generated 2-step solvable rigid pro-p-group G, i.e., sets defined by systems of equations in one variable with coefficients in G.
作者简介
N. Romanovskii
Sobolev Institute of Mathematics; Novosibirsk State University
编辑信件的主要联系方式.
Email: rmnvski@math.nsc.ru
俄罗斯联邦, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
补充文件
