Categoricity for Primitive Recursive and Polynomial Boolean Algebras
- Autores: Alaev P.E.1,2
-
Afiliações:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Edição: Volume 57, Nº 4 (2018)
- Páginas: 251-274
- Seção: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234093
- DOI: https://doi.org/10.1007/s10469-018-9498-1
- ID: 234093
Citar
Resumo
We define a class \( \mathbb{K} \)Σ of primitive recursive structures whose existential diagram is decidable with primitive recursive witnesses. It is proved that a Boolean algebra has a presentation in \( \mathbb{K} \)Σ iff it has a computable presentation with computable set of atoms. Moreover, such a Boolean algebra is primitive recursively categorical with respect to \( \mathbb{K} \)Σ iff it has finitely many atoms. The obtained results can also be carried over to Boolean algebras computable in polynomial time.
Sobre autores
P. Alaev
Sobolev Institute of Mathematics; Novosibirsk State University
Autor responsável pela correspondência
Email: alaev@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
Arquivos suplementares
