Degrees of Autostability for Prime Boolean Algebras
- Autores: Bazhenov N.A.1,2, Marchuk M.I.1
-
Afiliações:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Edição: Volume 57, Nº 2 (2018)
- Páginas: 98-114
- Seção: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234078
- DOI: https://doi.org/10.1007/s10469-018-9483-8
- ID: 234078
Citar
Resumo
We look at the concept of algorithmic complexity of isomorphisms between computable copies of Boolean algebras. Degrees of autostability are found for all prime Boolean algebras. It is shown that for any ordinals α and β with the condition 0 ≤ α ≤ β ≤ ω, there is a decidable model for which 0(α) is a degree of autostability relative to strong constructivizations, while 0(β) is a degree of autostability. It is proved that for any nonzero ordinal β ≤ ω, there is a decidable model for which there is no degree of autostability relative to strong constructivizations, while 0(β) is a degree of autostability.
Sobre autores
N. Bazhenov
Sobolev Institute of Mathematics; Novosibirsk State University
Autor responsável pela correspondência
Email: bazhenov@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090
M. Marchuk
Sobolev Institute of Mathematics
Email: bazhenov@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090
Arquivos suplementares
