Structures Computable in Polynomial Time. I
- Autores: Alaev P.E.1,2
-
Afiliações:
- Sobolev Institute of Mathematics
- Novosibirsk State University
- Edição: Volume 55, Nº 6 (2017)
- Páginas: 421-435
- Seção: Article
- URL: https://journals.rcsi.science/0002-5232/article/view/234011
- DOI: https://doi.org/10.1007/s10469-017-9416-y
- ID: 234011
Citar
Resumo
It is proved that every computable locally finite structure with finitely many functions has a presentation computable in polynomial time. Furthermore, a structure computable in polynomial time is polynomially categorical iff it is finite. If a structure is computable in polynomial time and locally finite then it is weakly polynomially categorical (i.e., categorical with respect to primitive recursive isomorphisms) iff it is finite.
Sobre autores
P. Alaev
Sobolev Institute of Mathematics; Novosibirsk State University
Autor responsável pela correspondência
Email: alaev@math.nsc.ru
Rússia, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 2, Novosibirsk, 630090
Arquivos suplementares
