Weakly Precomplete Equivalence Relations in the Ershov Hierarchy


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We study the computable reducibility ≤c for equivalence relations in the Ershov hierarchy. For an arbitrary notation a for a nonzero computable ordinal, it is stated that there exist a \( {\varPi}_a^{-1} \) -universal equivalence relation and a weakly precomplete \( {\varSigma}_a^{-1} \) - universal equivalence relation. We prove that for any \( {\varSigma}_a^{-1} \) equivalence relation E, there is a weakly precomplete \( {\varSigma}_a^{-1} \) equivalence relation F such that EcF. For finite levels \( {\varSigma}_m^{-1} \) in the Ershov hierarchy at which m = 4k +1 or m = 4k +2, it is shown that there exist infinitely many ≤c-degrees containing weakly precomplete, proper \( {\varSigma}_m^{-1} \) equivalence relations.

Авторлар туралы

N. Bazhenov

Sobolev Institute of Mathematics; Novosibirsk State University

Хат алмасуға жауапты Автор.
Email: bazhenov@math.nsc.ru
Ресей, pr. Akad. Koptyuga 4, Novosibirsk, 630090; ul. Pirogova 1, Novosibirsk, 630090

B. Kalmurzaev

Al-Farabi Kazakh National University

Email: bazhenov@math.nsc.ru
Қазақстан, Al-Farabi Ave. 71, Alma-Ata, 050038

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Springer Science+Business Media, LLC, part of Springer Nature, 2019