ВОСПРОИЗВЕДЕНИЕ ТЕМПЕРАТУРНОГО ОТКЛИКА НА ВУЛКАНИЧЕСКОЕ ВОЗДЕЙСТВИЕ ПИНАТУБО В МОДЕЛИ ЗЕМНОЙ СИСТЕМЫ INMCM6

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Приведены результаты экспериментов по настройке аэрозольного блока модели INMCM6 для корректного воспроизведения температурного отклика на вулканические выбросы сульфатного аэрозоля. Расчеты проводились с помощью модели Земной системы INMCM6 на период с 1979 по 1995 г., в течение которого произошли два взрывных извержения вулканов: Эль-Чичон в 1982 г. и Пинатубо в 1991 г. Временные ряды объемной концентрации и эффективного радиуса сульфатного стратосферного аэрозоля задавались согласно базе данных SADS v.3. На основе этих данных вычислялись оптические свойства сульфатных стратосферных аэрозолей (CCA), которые затем осреднялись для интервалов длин волн, используемых в радиационном блоке климатической модели INMCM6. В серии модельных ансамблевых экспериментов варьировались оптические свойства свойства CCA с целью наиболее реалистичного воспроизведения температурного отклика климатической системы на вулканическое воздействие – похолодания вблизи поверхности и нагрева воздуха в стратосфере. Если не учитывать поглощение длинноволновой радиации CCA, то в результате настройки коротковолновых оптических параметров CCA удалось с хорошей точностью (при сравнении с данными реанализа ERA5) воспроизвести временной ход глобальной оптической толщины CCA, амплитуды потепления нижней стратосферы и похолодания нижней тропосферы. Выявлено, что в модели INMCM наибольшее влияние на величину стратосферного потепления оказывает поглощение CCA коротковолновой радиации на длинах волн 1–2 мкм.

Об авторах

С. В. Кострыкин

Институт вычислительной математики им. Г.И. Марчука РАН; Институт глобального климата и экологии им. Ю.А. Изразля; Институт географии РАН

Email: s_kostr@mail.ru
Москва, Россия

Е. М. Володин

Институт вычислительной математики им. Г.И. Марчука РАН

Москва, Россия

Список литературы

  1. Володин Е.М. Воспроизведение современного климата моделью климатической системы INMCM60 // Известия РАН. Физика атмосферы и океана. 2023. Т. 59. № 1. С. 19–26.
  2. Володин Е.М., Кострыкин С.В. Аэрозольный блок в климатической модели ИВМ РАН // Метеорология и гидрология. 2016. № 10. С. 5–18.
  3. Елисеев А.В., Мохов И.И. Влияние вулканической активности на изменение климата последних нескольких веков: оценки с климатической моделью промежуточной сложности // Известия РАН. Физика атмосферы и океана. 2008. Т. 44. № 6. С. 723–736
  4. Зуев В.В., Зуева Н.Е. Вулканогенные возмущения стратосферы – главный регулятор долговременного поведения озоносферы в период с 1979 по 2008 г. // Оптика атмосферы и океана. 2011. Т. 24. № 01. С. 30–34.
  5. Усачева М.А., Смышляев С.П., Зубов В.А., Розанов Е.В. Моделирование изменений климата и вариаций атмосферного озона с 1980 по 2020 г. с помощью химико-климатической модели SOCOLv3 // Оптика атмосферы и океана. 2024. Т. 37. № 02. С. 158–162.
  6. Abdelkader M., Stenchikov G., Pozzer A., Tost H. and Lelieveld J. The effect of ash, water vapor, and heterogeneous chemistry on the evolution of a Pinatubo-size volcanic cloud // Atmos. Chem. Phys. 2023. V. 23. № 1. P. 471–500.
  7. Aquila V., Baldwin C., Mukherjee N., Hackert E., Li F., Marshak J. et al. Impacts of the eruption of Mount Pinatubo on surface temperatures and precipitation forecasts with the NASA GEOS subseasonal-to-seasonal system// J. Geoph. Res. 2021. V. 126. № 16. D034830.
  8. Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer R.J. and Taylor K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization // Geosci. Model Dev. 2016. V. 9. P. 1937–1958.
  9. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis // Quat. Journ. Royal Meteorol Soc. 2020 V. 146. № 730. P. 1999–2049.
  10. Kremser S., Thomason L.W., von Hobe M., Hermann M., Deshler T., Timmreck C., Toohey M., Stenke A., Schwarz J.P., Weigel R., Fueglistaler S., Prata F.J., Vernier J.P., Schlager H., Barnes J.E., Antuna-Marrero J.C., Fairlie D., Palm M., Mahieu E., Notholt J., Rex M., Bingen C., Vanhellemont F., Bourassa A., Plane J.M.C., Klocke D., Carn S.A., Clarisse L., Trickl T., Neely R., James A.D., Rieger L., Wilson J.C., Meland B. Stratospheric aerosol – Observations, processes, and impact on climate // Rev. Geophys. 2016. V. 54. № 2. P. 278–335.
  11. Lacis A. Volcanic aerosol radiative properties // PAGES Newsletter. 2015. V. 23. № 2. P. 50–51.
  12. Marshall L.R., Maters E.C., Schmidt A., Timmreck C., Robock A., Toohey M. Volcanic effects on climate: recent advances and future avenues // Bull. Volcanol. 2023. V. 84, № 54.
  13. Quaglia I., Timmreck C., Niemeier U., Visioni D., Pitari G., Brodowsky C., Brühl C., Dhomse S.S., Franke H., Laakso A., Mann G.W., Rozanov E., Sukhodolov T. Interactive stratospheric aerosol models’ response to different amounts and altitudes of SO 2 injection during the 1991 Pinatubo eruption // Atmos. Chem. Phys. 2023. V. 23. № 2. P. 921–948.
  14. Rieger L.A., Cole J.N.S., Fyfe J.C., Po-Chedley S., CameronSmith P.J., Durack P.J., Gillett N.P., Tang Q. Quantifying CanESM5 and EAMv1 sensitivities to Mt. Pinatubo volcanic forcing for the CMIP6 historical experiment // Geosci. Model Dev. 2020. V. 13. № 10. P. 4831–4843.
  15. Sukhodolov T., Sheng J.-X., Feinberg A., Luo B.-P., Peter T., Revell L., Stenke A., Weisenstein D.K., Rozanov E. Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0 // Geosci. Model Dev. 2018. V. 11, № 7. P. 2633–2647.
  16. Thomason L.W., Ernest N., Millán L., Rieger L., Bourassa A., Vernier J.-P., Manney G., Luo B., Arfeuille F., Peter T. A global space-based stratospheric aerosol climatology: 1979–2016 // Earth Syst. Sci. Data. 2018. V. 10. № 1. P. 469–492.
  17. Toohey M., Krüger K., Bittner M., Timmreck C., Schmidt H. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure // Atmos. Chem. Phys. 2014. V. 14. № 23. P. 13063–13079.
  18. Toohey M., Stevens B., Schmidt H., Timmreck C. Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations // Geosci. Model Dev. 2016. V. 9. № 11. P. 4049–4070.
  19. Weierbach H., LeGrande A.N., Tsigaridis K. The impact of ENSO and NAO initial conditions and anomalies on the modeled response to Pinatubo-sized volcanic forcing // Atmos. Chem. Phys. 2023. V. 23. № 24. P. 15491–15505.
  20. Zanchettin D., Timmreck C., Khodri M., Schmidt A., Toohey M., Abe M., Bekki S., Cole J., Fang S.-W., Feng W., Hegerl G., Johnson B., Lebas N., LeGrande A.N., Mann G.W., Marshall L., Rieger L., Robock A., Rubinetti S., Tsigaridis K., Weierbach H. Effects of forcing differences and initial conditions on inter-model agreement in the VolMIP volc-pinatubo-full experiment // Geosci. Model Dev. 2022. V. 15. № 5. P. 2265–2292.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).