Submeso Wave-Like Structures in the Atmospheric Boundary Layer and Their Parameters Measured with the Help of Sodar in Moscow Region

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper presents study of the parameters of wave-like structures based on the data of long-term continuous sodar monitoring of the atmospheric boundary layer (ABL). Submesoscale internal gravity waves (IGWs) of non-orographic origin trapped in a stably stratified ABL (SBL) are considered. Statistical data on the parameters of two classes of IGWs are presented: internal gravity-shear waves (IGSWs) of the Kelvin-Helmholtz billow (KHB) type and buoyancy waves (BW). Identification and classification of IGWs was carried out by the visual analysis of sodar echograms. The measurements carried out in the Moscow region were used. The seasonal and diurnal variability of the frequency of registration of waves of both classes were studied, the values of the parameters of the observed waves were analyzed, and the ranges and average values of these quantities were compared.

Sobre autores

D. Zaitseva

Obukhov Institute of Atmospheric Physics, Russian Academy of Science

Autor responsável pela correspondência
Email: zaycevadv@gmail.com
Russia, 119017, Moscow, Pyzhevskii per., 3

M. Kallistratova

Obukhov Institute of Atmospheric Physics, Russian Academy of Science

Email: zaycevadv@gmail.com
Russia, 119017, Moscow, Pyzhevskii per., 3

V. Luyluykin

Obukhov Institute of Atmospheric Physics, Russian Academy of Science; Bauman Moscow State University

Email: zaycevadv@gmail.com
Russia, 119017, Moscow, Pyzhevskii per., 3; Russia, 105005, Moscow, 2nd Baumanskaya, 5

R. Kouznetsov

Finnish Meteorolgical Institute

Email: zaycevadv@gmail.com
Finland, FI-00101, Helsinki, Erik Palménin aukio, 1

D. Kuznetsov

Obukhov Institute of Atmospheric Physics, Russian Academy of Science

Email: zaycevadv@gmail.com
Russia, 119017, Moscow, Pyzhevskii per., 3

N. Vazaeva

Obukhov Institute of Atmospheric Physics, Russian Academy of Science; Bauman Moscow State University

Email: zaycevadv@gmail.com
Russia, 119017, Moscow, Pyzhevskii per., 3; Russia, 105005, Moscow, 2nd Baumanskaya, 5

Bibliografia

  1. Бызова Н.Л., Иванов В.Н., Гаргер А.К. Турбулентность в пограничном слое атмосферы. Л.: Гидрометеоиздат, 1989. 263 с.
  2. Госсард Э., Хук У. Волны в атмосфере. М.: Мир, 1978. 532 с.
  3. Зайцева Д.В., Каллистратова М.А., Люлюкин В.С. и др. Воздействие внутренних гравитационных волн на флуктуации метеорологических параметров атмосферного пограничного слоя // Изв. РАН. Физика атмосферы и океана. 2018. Т. 54. № 2. С. 195–205.
  4. Кадыгров Е.Н., Кузнецова И.Н. Методические рекомендации по использованию данных дистанционных измерений профилей температуры в атмосферном пограничном слое микроволновыми профилемерами: теория и практика. Долгопрудный: Физматкнига, 2015. 171 с.
  5. Камардин А.П., Одинцов С.Л., Скороходов А.В. Идентификация внутренних гравитационных волн в атмосферном пограничном слое по данным содара // Оптика атмосферы и океана. 2014. Т. 27. № 9. С. 812–818.
  6. Кузнецов Р.Д. Акустический локатор ЛАТАН-3 для исследований атмосферного пограничного слоя // Оптика атмосферы и океана. 2007. Т. 20. № 8. С. 749–753.
  7. Куличков С.Н., Цыбульская Н.Д., Чунчузов И.П. и др. Исследования внутренних гравитационных волн от атмосферных фронтов в московском регионе // Изв. РАН. Физика атмосферы и океана. 2017. Т. 53. № 4. С. 455–469.
  8. Люлюкин В.С., Каллистратова М.А., Кузнецов Р.Д. и др. Внутренние гравитационно- сдвиговые волны в атмосферном пограничном слое по данным акустической локации // Изв. РАН. Физика атмосферы и океана. 2015. Т. 51. № 2. С. 218–229.
  9. Люлюкин В.С., Каллистратова М.А., Крамар В.Ф. и др. О барических системах, благоприятствующих возникновению гравитационно-сдвиговых волн в АПС // Турбулентность, динамика атмосферы и климата: сборник трудов. М., 2018. С. 559–563.
  10. Чунчузов И.П., Куличков С.Н., Попов О.Е. и др. Волновые возмущения атмосферного давления и скорости ветра в тропосфере, связанные с солнечным терминатором // Изв. РАН. Физика атмосферы и океана. 2021. Т. 57. № 6. С. 665–679.
  11. Banakh V.A., Smalikho I.N., Falits A.V. Wind–Temperature Regime and Wind Turbulence in a Stable Boundary Layer of the Atmosphere: Case Study // Remote Sens. 2020. V. 12. № 6. P. 955.
  12. Fukao S., Luce H., Mega T. et al. Extensive studies of large-amplitude Kelvin–Helmholtz billows in the lower atmosphere with VHF middle and upper atmosphere radar // Q. J. R. Meteorol. Soc. 2011. V. 137. № 657. P. 1019–1041.
  13. Jiang Q. Impact of Elevated Kelvin–Helmholtz Billows on the Atmospheric Boundary Layer //J. Atm. Sci. 2021. V. 78. № 12. P. 3983–3999.
  14. Kallistratova M.A., Kouznetsov R.D., Kramar V.F. et al. Profiles of wind speed variances within nocturnal low-level jets observed with a sodar // J. Atmos. Ocean. Technol. 2013. V. 30. № 9. P. 1970–1977.
  15. Kallistratova M.A., Petenko I.V., Kouznetsov R.D. et al. Kelvin-Helmholtz billows in rising morning inversions // IOP Conf. Series: Earth and Environmental Science. 2019. V. 231. № 1. P. 012025.
  16. Kurgansky M.V. On short-wave instability of the stratified Kolmogorov flow // Theoretical and Computational Fluid Dynamics. 2022. T. 36. № 4. C. 575–595.
  17. Mayor S.D. Observations of microscale internal gravity waves in very stable atmospheric boundary layers over an orchard canopy // Agric. For. Meteorol. 2017. V. 244. P. 136–150.
  18. Nappo C.J. An introduction to atmospheric gravity waves. Amsterdam-Boston-Heidelberg: Elsevier Inc., 2013. 359 p.
  19. Pekour M. S., Kallistratova M.A., Lokoschenko M.A. et al. Acoustic sounding study of the mixing layer over a city // CIS Selected Papers: Optical Monitoring of the Environment. SPIE, 1993. V. 2107. P. 169–193.
  20. Petenko I., Mastrantonio G., Viola A. et al. Wavy vertical motions in the ABL observed by sodar // Boundary-Layer Meteorol. 2012. V. 143. № 1. P. 125–141.
  21. Petenko I., Argentini S., Casasanta G. et al. Wavelike structures in the turbulent layer during the morning development of convection at Dome C, Antarctica // Boundary-Layer Meteorol. 2016. V. 161. № 2. P. 289–307.
  22. Rees J.M., Denholm–Price J.C.W., King J.C. et al. A Climatological Study of Internal Gravity Waves in the Atmospheric Boundary Layer Overlying the Brunt Ice Shelf, Antarctica // J. Atm. Sci. 2000. V. 57. № 4. P. 511–526.
  23. Russell P.B., Uthe E.E. Regional patterns of mixing depth and stability: Sodar network measurements for input to air quality models // Bulletin of the American M-eteorological Society. 1978. V. 59. № 10. P. 1275–1287.
  24. Sun J., Mahrt L., Nappo C. et al. Wind and temperature oscillations generated by wave–turbulence interactions in the stably stratified boundary layer // J. Atm. Sci. 2015. V. 72. № 4. P. 1484–1503.
  25. Sun J., Nappo C.J., Mahrt L. et al. Review of wave-tu-rbulence interactions in the stable atmospheric boundary layer // Rev. Geophys. 2015. V. 53. № 3. P. 956–993.
  26. Thorpe S.A. Turbulence in stably stratified fluids: A review of laboratory experiments // Boundary-Layer Meteorol. 1973. V. 5. № 1. P. 95–119.
  27. Viana S., Yagüe C., Maqueda G. Propagation and effects of a mesoscale gravity wave over a weakly-stratified nocturnal boundary layer during the SABLES2006 field campaign // Boundary-Layer Meteorol. 2009. V. 133. № 2. P. 165–188.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (717KB)
3.

Baixar (773KB)
4.

Baixar (282KB)
5.

Baixar (175KB)
6.

Baixar (82KB)
7.

Baixar (615KB)
8.

Baixar (326KB)
9.

Baixar (103KB)


Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–NãoComercial–SemDerivações 4.0 Internacional.

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies