СРАВНЕНИЕ МЕТОДОВ МАТРИЧНОЙ ФАКТОРИЗАЦИИ ДЛЯ ОБЪЕКТНО-ОРИЕНТИРОВАННЫХ РЕКОМЕНДАЦИЙ
- Авторы: Жарова М.А.1, Цурков В.И.1
-
Учреждения:
- ФИЦ ИУ РАН
- Выпуск: № 5 (2025)
- Страницы: 125-140
- Раздел: ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ
- URL: https://journals.rcsi.science/0002-3388/article/view/332752
- DOI: https://doi.org/10.31857/S0002338825050104
- ID: 332752
Цитировать
Аннотация
Современные рекомендательные системы выходят за рамки классических задач персонализации, охватывая все более сложные сценарии взаимодействия между объектами. Одной из таких задач является построение взаимодополняющих рекомендаций, где стандартные пользовательские архитектуры оказываются недостаточно гибкими. Сравниваются два подхода к ее решению на основе методов матричной факторизации: с классическим обучением на матрице “пользователь-объект” с последующим введением ограничений на базе статистики совстречаемости и напрямую на матрице “объект-объект”, построенной по правилам временного совокупного действия. Анализируются пути преодоления ограничений традиционных методов и раскрываются перспективы применения новых стратегий в рамках различных типов данных и бизнес-задач.
Ключевые слова
Об авторах
М. А. Жарова
ФИЦ ИУ РАН
Автор, ответственный за переписку.
Email: zharova.ma@phystech.edu
Москва, Россия
В. И. Цурков
ФИЦ ИУ РАН
Email: v.tsurkov@frccsc.ru
Москва, Россия
Список литературы
- McAuley J., Pandey R., Leskovec J. Inferring Networks of Substitutable and Complementary Products // arXiv:1506.08839, 2015.
- Shi Y., Larson M., Hanjalic A. Attribute-Aware Recommender System Based on Collaborative Filtering: Survey and Classification // Frontiers in Big Data. 2020. V. 2. № 49.
- Deshpande M., Karypis G. Item-based top-N Recommendation Algorithms // ACM Transactions on Information Systems (TOIS). 2004. V. 22. № 1. P. 143–-177.
- Sinha L., Sinha N. Personalized Diversification of Complementary Recommendations with User Preference in Online Grocery // Frontiers in Big Data. 2023. V. 6.
- Rendle S., Krichene W., Zhang L., Anderson J. Neural Collaborative Filtering vs. Matrix Factorization Revisited // Proc. 14th ACM Conf. on Recommender Systems. Brazil, 2020. P. 240–248.
- Zharova M., Tsurkov V. Boosting Based Recommender System // J. Computer and Systems Sciences International. 2024. V. 63. P. 922–940.
- Zharova M., Tsurkov V. Neural Network Approaches for Recommender Systems // J. Computer and Systems Sciences International. 2024. V. 62. P. 1048–1062.
- Zhou Y., Wilkinson D., Schreiber R., Pan R. Large-Scale Parallel Collaborative Filtering for the Netflix Prize // Proc. Intern. Conf. on Algorithmic Applications in Management (AAIM). Shanghai, China, 2008. P. 337–348.
- Al-Nafjan A., Alrashoudi N., Alrasheed H. Recommendation System Algorithms on Location-Based Social Networks: Comparative Study // Information. 2022. V. 13. № 188.
- Guan X., Li C.-T. Enhanced SVD for Collaborative Filtering // Advances in Knowledge Discovery and Data Mining. 2016. V. 9652. P. 503–514
- Cacheda F., Carneiro V. Comparison of Collaborative Filtering Algorithms: Limitations of Current Techniques and Proposals for Scalable, High-performance Recommender Systems // ACM Transactions on the Web (TWEB). 2011. V. 5. № 1. P. 1–33.
- Hu Y., Koren Y., Volinsky C. Collaborative Filtering for Implicit Feedback Datasets // Proc. Intern. Conf. on Data Mining (ICDM). Pisa, Italy, 2008. P. 263–272
- McDonald G. C. Ridge Regression // Wiley Interdisciplinary Reviews: Computational Statistics. 2009. V. 1. № 1. P. 93–100.
- Имплементация ALS на Python // GitHub. Implicit: Webcite https://github.com/benfred/implicit (accessed: 10.07.2025).
- Tas K. On the Implicit Feedback Based Data Modeling Approaches for Recommendation Systems // Proc. Intern. Conf. on Electrical, Communication, and Computer Engineering (ICECCE). Kuala Lumpur, Malaysia, 2021. P. 1–6.
- Rendle S., Freudenthaler C., Gantner Z., Schmidt-Thieme L. BPR: Bayesian Personalized Ranking from Implicit Feedback // Proc. Conf. on Uncertainty in Artificial Intelligence. Montreal Quebec, Canada, 2009. P. 452–461.
- Zharova M., Tsurkov V. Using Negative Actions for Improving Quality of Recommender Systems // J. Computer and Systems Sciences International. 2025. V. 64. P. 132–148.
- Ding J., Yu G., He X., Li Y. Sampler Design for Bayesian Personalized Ranking by Leveraging View Data // arXiv:1809.08162, 2018.
- Kula M. Metadata Embeddings for User and Item Cold-start Recommendations // arXiv:1507.08439, 2018.
- Berisha F Addressing Cold Start in Recommender Systems with Neural Networks: A Literature Survey // Intern. J. of Computers and Applications. 2023. V. 45. P. 485–496.
- Zhang Z., Shi L., Zhou D.-X. Classification with Deep Neural Networks and Logistic Loss // J. Machine Learning Research (JMLR). 2024. V. 25. P. 1–117.
- Weston J., Bengio S., Usunier N. Scaling Up To Large Vocabulary Image Annotation // Proc. Intern. Joint Conf. on Artificial Intelligence. Barcelona, Spain, 2011. P. 2764–2770.
- Имплементация библиотеки LightFM // GitHub. LightFM: webcite https://github.com/lyst/lightfm (accessed: 10.07.2025).
- He X., Liao L., Zhang H., Nie L., Hu X., Chua T.-S. Neural Collaborative Filtering // Proc. Intern. Conf. on World Wide Web. Perth. Australia, 2017. P. 173–182.
- Hurtik P., Tomasiello S. Binary Cross-entropy with Dynamical Clipping // Neural Computing and Applications. 2022. V. 34. № 14. P. 12029–12041.
- Ayub M. An Effective Model for Jaccard Coefficient to Increase the Performance of Collaborative Filtering // Arabian J. for Science and Engineering. 2020. V. 45. P. 9997–10017.
- Lobo D. Association Rules: Normalizing the Lift // Proc. Intern. Conf. on Digital Information Management (ICDIM). Phitsanulok, Thailand, 2014. P. 151–155.
- Pellegrini R. Don’t Recommend the Obvious: Estimate Probability Ratios // Proc. ACM Recommender Systems Conf. (RecSys). Seattle, USA, 2022. P. 188–197.
- Chowdhury P. Evaluating the Effectiveness of Collaborative Filtering Similarity Measures: A Comprehensive Review // Procedia Computer Science. 2024. V. 235. P. 2641–2650.
- Li M. Modeling Personalized Representation for Within-Basket Recommendation // Expert Systems with Applications. 2022. V. 192. Iss. C.
- Имплементация Faiss для Python // GitHub. Faiss-wheels: webcite https://github.com/kyamagu/faiss-wheels (accessed: 10.07.2025).
- Douze M., Guzhva A., Deng C. The Faiss Library // arXiv:2401.08281, 2025.
- Amati G. BM25 // In Encyclopedia of Database Systems. Boston, MA: Springer, 2009. P. 257–260.
Дополнительные файлы
