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Предлагается конструктивная технология решения задач двухканального управления двумя взаимо-
связанными через граничные условия неоднородными системами с распределенными параметрами 
в линейно-квадратичных задачах оптимизации по критерию энергосбережения при заданной точно-
сти равномерного приближения результирующего пространственного распределения управляемых 
величин к требуемому состоянию. Разработанная методика использует процедуру параметризации 
искомых управляющих воздействий на конечномерном подмножестве бесконечного числа финиш-
ных значений сопряженных переменных и последующую процедуру точной редукции к парамет-
рической задаче полубесконечной оптимизации, которая решается по обобщаемой на исследуемую 
ситуацию схеме предложенного ранее альтернансного метода. Показывается, что уравнения опти-
мальных регуляторов с сосредоточенными управляющими воздействиями для каждого из объектов 
сводятся к линейным алгоритмам обратной связи по измеряемому состоянию с нестационарными 
коэффициентами передачи. Приводится представляющий самостоятельный интерес пример опти-
мизации процесса индукционного нагрева двух неограниченных пластин в условиях идеального теп-
лового контакта на их граничных поверхностях.
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by the criterion of energy saving is proposed. The resulting spatial distribution of controlled variables is 
approximated with given uniform accuracy to the desired state. The developed technique initially employs 
a procedure of parameterization of the desired control actions on a finite-dimensional subset of an infinite 
number of final values of conjugate variables. Subsequent procedure is applied for exact reduction to a 
parametric problem of semi-infinite optimization, which is solved according to the scheme of the previously 
proposed alternance method, which has been generalized to the situation under study. It is demonstrated that 
the equations of optimal controllers with lumped control actions for each of the objects are reduced to linear 
feedback algorithms on the measured state with non-stationary transfer coefficients. An illustrative example of 
optimization of the process of induction heating of two unbounded plates under conditions of ideal thermal 
contact on their boundary surfaces is presented, which is of independent interest.

Keywords: interconnected systems with distributed parameters, uniform optimization, dual-channel control, 
minimum energy consumption, alternance method, synthesis of optimal controllers

Введение. Целый ряд представляющих теоретический интерес и актуальных для прило-
жений задач оптимального управления (ЗОУ) системами с распределенными параметрами 
(СРП) формулируется в условиях использования векторных управляющих воздействий (ВУВ) 
с целью повышения эффективности оптимизируемых процессов по выбранному критерию 
качества. При определении воздействия на объект по каждой из компонент ВУВ в отдель-
ности в качестве соответствующего канала управления возникают при использовании ВУВ 
задачи многоканального управления (ЗМУ). Сказанное относится, в частности, к ситуациям 
с применением совокупности различных сосредоточенных внутренних или граничных воз-
действий на входе объекта, реализуемых одновременно или со сдвигом во времени (в системах 
ступенчатого управления технологическими комплексами) [1–4].

Отдельный класс наиболее сложных и малоисследованных ЗМУ СРП возникает для вза-
имосвязанных физически неоднородных СРП с различными управляющими воздействиями 
для каждого из объектов, нашедших широкое практическое применение в самых различных 
предметных областях [5–9].

Эффективный подход к ЗОУ СРП с многоканальным управлением аналогично задачам со 
скалярными управляющими воздействиями связан с заданием в бесконечномерном фазовом 
пространстве СРП целевого множества, которое отвечает достижимым значением допусков 
на отклонение от требуемого конечного состояния объекта, оцениваемых в равномерной мет-
рике на множестве пространственных аргументов управляемой величины [10–13].

Последующее алгоритмически точное решение ЗМУ СРП в подобной постановке может 
быть получено по модифицированной схеме конструктивного альтернансного метода пара-
метрической оптимизации [10–12], отличающейся существенным усложнением вычислитель-
ной технологии по сравнению с задачами одноканального управления [13].

Некоторые задачи оптимального по быстродействию управления СРП с векторными 
управляющими воздействиями исследовались в работах [13, 14]. В настоящей работе альтер-
нансный метод распространяется на представляющую самостоятельный интерес задачу двух-
канального управления с минимальным расходом энергии системой двух взаимосвязанных 
граничными условиями объектов с распределенными параметрами. Приводится типичный 
для приложений пример оптимизации по критерию энергопотребления процесса управления 
нестационарными температурными полями двух физически неоднородных пластин в услови-
ях идеального теплового контакта на их граничных поверхностях.

1. Постановка задачи. Пусть управляемые величины Qm(xm, t), m = 1, 2, системы двух взаи-
мосвязанных объектов с распределенными параметрами описываются в зависимости от вре-
мени t ∈ [0, t*] и пространственных координат xm ∈ [x0m, x1m] системой линейных неоднородных 
пространственно одномерных уравнений в частных производных параболического типа с по-
стоянными во времени коэффициентами [12, 13]:
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с заданными начальными состояниями:

	 ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2,0 ;  ,0Q x f x Q x f x= = , 	 (1.2)

граничными условиями:
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и векторными внутренними u(t) = (u1(t), u2(t)) или граничными gm(t) = (g0m(t), g1m(t)) входными 
воздействиями, компоненты которых или сами векторы u(t ) и gm(t) используются в качестве 
сосредоточенных управлений.

Всюду далее исключается для простоты случай совместного применения в этой роли um и 
gm, и предполагается возможность реализации только одного из четырех вариантов вектор-
ного граничного управления g(t) = (g1(t), g2(t)) c двумя компонентами вида gjm(t) в (1.3). Здесь 
ajm = const ≥ 0, bjm = const > 0; дифференциальные операторы в правых частях (1.1) самосопря-
женные; Fm(xm), fm(xm), am(xm), bm(xm), cm(xm) являются известными достаточно гладкими функ-
циями своих аргументов, причем am(xm)> 0. Операторы Lj

(m)(t), m = 1, 2, в (1.3):

	 ( ) ( ) ( )1 2 1
2( ) ( )j j jL t h L t=  и ( ) ( ) ( )2 1 2
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учитывают соответственно зависимости Q1(xj1, t) от Q2(x2, t) и Q2(xj2, t) от Q1(xj1, t), обусловлен-
ные взаимосвязями граничных условий в (1.3) при m = 1, 2, в форме взвешенных с коэффи-
циентами hj

(2) и hj
(1) реакций Lj 2

(1)(t), Lj 1
(2)(t) “сопрягающих” (переходных [5]) распределенных 

блоков на входные воздействия соответственно по Q2 и Q1:
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и выступают в роли аддитивных дополнений к граничным управлениям в (1.3) [5]. В послед-
них выражениях Gj 2

(1), Gj 1
(2) – функции Грина каждого из таких блоков. Допустимые значения 

управляющих воздействий, рассматриваемых в классе кусочно-непрерывных функций, не 
стесняются никакими дополнительными ограничениями.

За фиксируемое заранее время t * требуется обеспечить приближение Qm(xm, t *) к заданным 
пространственным распределениям Qm

**(x) с оцениваемой в равномерной метрике допустимой 
точностью em, согласно соотношениям
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Пусть качество процесса управления объектом (1.1)–(1.5) оценивается интегральным 
функционалом

	 ( ) ( )( )
*
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в типичных ситуациях характеризующим расход энергии на процесс управления [15–17]. 
Здесь и всюду далее
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	 ( ) ( ) ( )( )1 2,u t u t u t= ; ( ) ( )u t t= u  или ( ) ( )u t g t=  	 (1.8)

при рассмотрении внутренних или граничных входных воздействий только в роли управлений 
соответственно в (1.1) или (1.3).

Применение к уравнениям (1.1) конечного интегрального преобразования по про-
странственному аргументу xm с ядром, равным собственным функциям jmn(mmn, xm), n = 1, 2, ..., 
начально-краевой задачи (1.1)–(1.3), где m2

mn – собственные числа [18], приводит к описанию 
рассматриваемой СРП бесконечной системой обыкновенных дифференциальных уравнений 
первого порядка для временных мод Qmn(t) разложения Qm(xm, t) в бесконечный сходящийся 
в среднем ряд по ортонормированной с весом rm(xm) системе jmn(mmn, xm) [13]:

	
( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )

= −m + m u + j + −
b

− j + = m = =
b

12 ( )
1 1 1 1

1

0 ( )
0 0 0 0

0
, 0 , 1, 2,..., 1, 2,

m m mmn
mn mn mn mn m m m mn m m

m

m m m
m m mn m m mn mn mn

m

a xdQ
Q F t r x x g t L

dt

a x
r x x g t L Q f n m

	 (1.9)

	 ( ) ( ) ( )
1

, ,m m mn mn mn m
n

Q x t Q t x
∞

=

= j m∑ .	 (1.10)

Здесь граничные условия (1.3) учитываются в правых частях уравнений (1.9) по известным 
правилам метода конечных интегральных преобразований (КИП); rm(xjm) – значения весовых 
функций КИП; –Fmn(mmn), f mn(mmn) – моды разложения в ряды по jmn(mmn, x) вида (1.10) функ-
ций Fm(xm) в (1.1) и fm(xm) в (1.2).

Применительно к описанию СРП (1.1)–(1.3) счетно-мерной системой уравнений (1.9), 
(1.10) задача сводится к отысканию оптимального векторного управления u*(t) = (u1*, u2*(t)) 
в (1.8), обеспечивающего выполнение требований (1.6) при минимальном значении функцио
нала качества (1.7).

2. Оптимальное программное управление. 2 . 1 .  С т р у к т у р а  о п т и м а л ь н о г о  у п р а в л е -
н и я . Стандартная процедура принципа максимума Понтрягина, распространяемого на сфор-
мулированную бесконечномерную задачу оптимизации для объекта (1.9), (1.10) с заданным 
целевым множеством конечных состояний (1.6) [11, 19], определяет аналогично скалярному 
варианту [20] векторное программное оптимальное управление u*(t) = (u1*, u2*(t)) для каждой из 
его компонент в форме равномерно сходящегося ряда бесконечной взвешенной суммы сопря-
женных переменных y*

mn(t), представляемых в экспоненциальной форме:

	 −m −y = y
2 *( )** ( ) ( ) ,mn t t

mn mnt t e   m = 1, 2; n = 1, 2, ...,	 (2.1)

с точностью до заранее неизвестных весовых коэффициентов, в роли которых фигурируют 
конечные значения ymn(t *):

	 ( ) ( ) ( )2 *
* * *

1

1
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mn t t

m mn mn
n

u t k t e
∞ −m −

=

= y∑ , m = 1, 2.	 (2.2)

Здесь kmn – множители при управлениях um(t) или gm(t) в (1.9) соответственно при um(t) = um(t) 
или um(t) = gm(t). Значения y*

mn(t *), n = 1, 2, ..., должны быть найдены из условий достижения 
целевого множества (1.6). Именно бесконечная размерность этих векторов приводит в двух-
точечной схеме, соответствующей значениям em = 0 в (1.6), к трудноразрешимой проблеме 
определения u*(t) в форме (2.2) [21]. Заметим, что непосредственное использование в целях 
отыскания ym

*(t) = (y*
mn(t)), n = 1, 2, ..., классических условий трансверсальности становится не-

возможным при негладкой границе целевого множества (1.6) в конечной точке оптимального 
процесса [3].

2 . 2 .  П о с л е д о в а т е л ь н а я  п а р а м е т р и з а ц и я  у п р а в л я ю щ и х  в о з д е й с т в и й . 
Применительно к исследуемой задаче двухканального управления двумя объектами (1.1)–
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(1.3) может быть использована предложенная в работе [22] процедура последовательной па-
раметризации каждого из управляющих воздействий us

*(t), s = 1, 2, в (2.2) на конечномерных 
подмножествах величин ys(t *) = (ysn(t *)), n = 1, 2,..., формируемых в виде Ns-мерных векторов 

( )( )sN
s sny = y , n = 1, Ns, финишных значений *( )sn sn ty = y  Ns первых сопряженных функций 

вида (2.1) при равных нулю остальных величинах ysn(t *) для всех n > Ns:

	 ( ) ( )( ) ( )*sN
s sn snty = y = y , 1, sn N= ; 1sN ≥ ; ( )* 0sn ty = , sn N> , 1,2s = .	 (2.3)

Параметризуемое подобным образом оптимальное управление (2.2) описывается уже ко-
нечной суммой экспонент в зависимости от соответствующего оптимальному процессу управ-
ления вектора ( )s sn

∗
∗y = y  параметров , 1,2; 1,sn ss n N∗y = = :
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s
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Согласно (2.3), ys
(Ns1) = ys

(Ns2) при Ns1 > Ns2, если составляющие ysn(t*) вектора ys
(Ns1) оказыва-

ются равными нулю для всех 2 11,s sn N N= + . Отсюда следует на основании (2.3), что мини-
мально достижимые в классе управлений (2.4) значения

	 ( )
( ) ( ) [ ]∈y y

 e = −
  

1 2

1 2 0 1
1 2

, ***
min

,,

min max ( , ) ( ) ,
N N m m m

N N
m m mm

x x x
Q x t Q x  m = 1, 2,	 (2.5)

ошибки равномерного приближения Qm(xm, t *) к Qm
**(xm) не возрастают с ростом размерности 

N1 + N2 вектора параметров ( ) ( )+y = y y1 2 1 2( ) ( )
1 2,N N N N . Как показано в работе [23], эти величины 

монотонно убывают:

	

( ) ( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )

1,1 2,2 1, 1 1, , 1
min min min min min

,1, , 1 ,
infmin min min min

... max ,

min , ... 0, 1,2,m m

m m m m m

mm m m m m

x− x− x− x x x−

r rx− x x x− x x

e > e > > e > e e ≥

≥ e e > e > > e = e ≥ =
	 (2.6)

характеризуя сужающееся к **( )m mQ x  с возрастанием 1, mx = r  семейство целевых множеств 
в (1.6) при em = em

(x,
m 
x)
in. Здесь точная нижняя грань em inf в (2.6) оказывается равной минимаксу 

r re( , )
min
m m

m , где rm = ∞ при em inf = 0 и rm < ∞ при em inf > 0 соответственно для управляемых и неуп
равляемых относительно **( )m mQ x  объектов [10]. Неравенства (2.6) как раз создают возмож-
ность обеспечения требуемой точности em достижения **( )m mQ x  в случае em ≥ em inf при конечном 
числе N1 и N2 компонент векторов параметров y1

(N1) и y2
(N2) в (2.3), принципиально упрощая 

тем самым рассматриваемую ЗОУ СРП. В случае, когда em < em inf в (1.6), решение этой задачи 
не существует.

Аналогично задаче с одноканальным управлением одним объектом [10, 22] можно пока-
зать, что числа N1

0, N1
0 компонент векторов параметров y1

(N1), y2
(N2) в (2.3), характеризующих 

оптимальное управление us
*(t) в (2.4), определяются по месту в цепочке неравенств (2.6) за-

данных в (1.6) величин em [13]:

	

( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

− −

− − − − − −

− − − −

= = e ≤ e < e e

= = − e ≤ e < e e < e ≤ e < e

= − = e ≤ e < e e < e

, 1, , 10 0
1 2 min min min

, 1 1, 1, , 1 1, 10 0
1 2 min min min min min

1, , 1 , 1 1,0 0
1 2 min min min min

, если min , ,

; 1, если или ,

1; , если или

w w w w w w
mm m m

w w w w w w w w w w
m mm m m m m

w w w w w w w w
mm m m m

N N w

N w N w

N w N w ( )− −≤ e < e

=

1, 1
min ,

1,2.

w w
m m

m

	 (2.7)

Дальнейшая проблема сводится к фактическому определению векторов y1
(N1

0), y2
(N2

0) из 
условий достижения заданных величин em в (1.6).
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2 . 3 .  Р е д у к ц и я  к  з а д а ч е  п о л у б е с к о н е ч н о й  о п т и м и з а ц и и . Интегрирование 
уравнений модели объекта (1.9) с ys

(Ns)-параметризованным управлением вида (2.4) и 
подстановка us

*(t) в форме (2.4) в (1.7) приводят к представлению конечных состояний 
Qm(xm, t*), описываемых разложениями в ряды (1.10), и критерия оптимальности (1.7) в форме 
явных зависимостей соответственно Qm(xm, y1

(N1
0), y2

(N2
0)) и I(y1

(N1
0), y2

(N2
0)) от своих аргументов.

В результате осуществляется точная редукция исходной ЗОУ ОРП к задаче полубесконеч-
ной оптимизации (ЗПО) [10–12]:

	 ( )
( ) ( )y y

y y →1 2

1 2
1 2

( ) ( )
1 2

,

, min ,
N N

N NI 	 (2.8)

	 ( ) ( )( ) [ ]
( ) ( )( ) ( )1 2 1 2

0 1

**
1 2 1 2

,
, max , , , 1,2

m m m

N N N N
m m m m m m

x x x
Q x Q x m

∈
Φ y y = y y − ≤ e = ,	 (2.9)

на экстремум функции (2.8) конечного числа N1 + N2 переменных y1
(N1

0), y2
(N2

0) в (2.3) с беско-
нечным числом диктуемых требованиями (1.6) ограничений для всех ∈ 0 1[ , ],m m mx x x  m = 1, 2, 
эквивалентных двум ограничениям на функции максимума Фm в (2.9).

Заметим, что получение аналитических решений взаимосвязанной операторами Lj
(m) в (1.3) 

системы уравнений (1.9) с целью определения явного вида функций Qm(xm, y1
(N1), y2

(N2)) для их 
использования в (2.9) оказывается существенно более сложной процедурой, чем в задачах 
управления одним объектом, связанной с необходимостью преодоления ряда вычислительных 
затруднений [24].

Решения y1*, y2* ЗПО (2.8), (2.9), где N1
0, N2

0 выбираются по правилам (2.7), может быть 
получено по схеме альтернансного метода [10–12], базирующегося на специальных альтер-
нансных свойствах y1*, y2*, согласно которым в условиях малостеснительных допущений 
в некоторых точках xim

0  ∈ [x0m, x1m], i = 1, Rm
0, m = 1, 2, достигаются предельно допустимые зна-

чения Фm(y1*, y2*) в (2.9), равные em:

	 ∗ ∗y y − = e0 ** 0
1 2( , , ) ( ) ,m im im mQ x Q x  m = 1, 2, 01, mi R= .	 (2.10)

Число R1
0 + R2

0 этих точек оказывается равным числу всех искомых параметров оптимально-
го процесса, включая все N1

0 + N2
0 компоненты векторов y1* и y2* в (2.3) при заведомо фикси-

руемых величинах em и наряду с ними априори неизвестные величины минимакса в (2.6), если 
с ними по исходным требованиям должны совпадать значения em, { }1,2m ∈  в (1.6):

	


e < e
= 
 + e = e =

0 0
1 2

0 0
1 2

( , )0
min0

( , )0
min

, если ;

1, если ,  1, 2.

N N
m mm

m
N N

m mm

N
R

N m

	 (2.11)

При наличии диктуемой закономерностями предметной области необходимой дополни-
тельной информации о характере зависимостей разности ( ) ( )**

1 2, ,m m m mQ x Q x∗ ∗y y −  от про-
странственных переменных xm на интервалах [x0m, x1m], позволяющей идентифицировать 
значения x 0im для всех i = 

—
1,

—
 
—
Rm

0 и знаки отклонений Qm(xim, y1*, y2*) – Qm
**(xim) в этих точках, 

обеспечивается редукция равенств (2.10), составляемых для абсолютных величин указанных 
отклонений, к разрешаемой стандартными численными методами системе R1

0 + R1
0
1 + R2

0 + R2
0
1 

уравнений для самих разностей:

	 ( ) ( )0 ** 0
1 2, ,m im m im mQ x Q x∗ ∗y y − = ±e , 01, mi R= ,  m = 1, 2, 	 (2.12)

∗ ∗∂ y y ∂
− =

∂ ∂

0 ** 0
1 2( , , ) ( )

0,m ivm m ivm

m m

Q x Q x
x x

 0
1int ,ivm om mx x x∈    , 0

11, mv R= , 0 0
1m mR R≤ , ∈0 0{ }ivm imx x 	 (2.13)
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относительно R1
0 + R1

0
1 + R2

0 + R2
0
1 неизвестных y1*, y2*; 

0
1ivx , = 0

111,v R ; 0
2ivx , 0

211,v R=  и e
0 0
1 2( , )
min

N N
m , 

m ∈ {1, 2}, если e = e
0 0
1 2( , )

min
N N

m m  в (2.12). Здесь каждой точке x0
im однозначным образом соответствует 

свой знак em в (2.12), а равенства (2.13) представляют собой условия существования экстрему-
ма зависимостей Qm(xm, y1*, y2*) – Qm

**(xm) во внутренних точках x0
ivm отрезков [x0m, x1m] с мак-

симальными отклонениями em конечного состояния объекта от требуемого.
Подобно задаче одноканального управления одним объектом [20] сначала требуется решить 

ряд ЗПО (2.8), (2.9), сводимых к системам уравнений (2.12), (2.13), полагая em равными s-му 
члену ряда неравенств (2.6) для последовательно возрастающих значений s = 1, 2, ..., sm. На 
каждом шаге этой процедуры находятся заведомо неизвестные величины минимаксов в (2.6), 
позволяющие при некотором s = sm определить место изначально заданных допустимых от-
клонений em в этой цепочке неравенств, если em ≥ em inf, с целью последующего выбора N1

0, N2
0 

по правилам (2.7). В случае, когда по исходным требованиям em должны быть равны e
0 0
1 2( , )

min
N N

m  
для m ∈ {1, 2}, рассматриваемая задача оказывается уже решенной на этом этапе вычислитель-
ной технологии. В условиях e > e

0 0
1 2( , )

inf
N N

m m , m = 1 и(или) m = 2, система уравнений (2.12), (2.13) 
решается для найденных N1

0, N2
0 при известных значениях em.

3. Синтез оптимального управления. Интегрирование системы уравнений (1.9) модально-
го описания взаимосвязанной СРП (1.1)–(1.3) с параметризованным оптимальным управле-
нием (2.4), параметры которого y1*, y2* находятся путем решения ЗПО (2.8), (2.9), позво-
ляет найти Lj

(m)(t), m = 1, 2, в (1.3)–(1.5) в форме явных функций времени hj
(1)(xj1, y1*, y2*, t), 

hj
(2)(xj2, y1*, y2*, t). Последующая подстановка этих функций в (1.3) при заведомо выбранном 

j = 0 или j = 1 приводит к возможности рассмотрения СРП (1.1)–(1.3) в качестве двух автоном-
ных независимых друг от друга объектов управления для m = 1 и m = 2 с раздельным их беско-
нечномерным модальным представлением в оптимальном процессе следующего вида вместо 
(1.9), согласно (2.4):

	 ( ) ( ) ( ) ( )
( ) ( ) { }

∗ ∗ ∗= −m + y + h y y

= m = ∈

*
1 12 * *1

1 1 1 1 1 1 1 21

1 1 1

1
, , , , ,

2

0 , 1,2,..., 0,1 ,

n
n n n jjn

n n n

dQ
Q k u t k x t

dt

Q f n j

	 (3.1)

	 ( ) ( ) ( ) ( )
( ) ( ) { }

*
1 22 * *2

2 2 2 2 2 2 1 22

2 2 2

1
, , , , ,

2

0 , 1,2,..., 0,1 ,

n
n n n jjn

n n n

dQ
Q k u t k x t

dt

Q f n j

∗ ∗ ∗= −m + y + h y y

= m = ∈
	 (3.2)

где ksn
(1), s = 1, 2 – множители при Lj

(m) в (1.9), совпадающие с kmn в (2.2), если us = gs.
Ограничимся всюду далее возможностью описания бесконечномерных объектов (3.1), (3.2) 

с любой требуемой точностью “укороченной” системой достаточно большого конечного числа 
M < ∞ первых уравнений в (3.1), (3.2) [25, 26]. Для каждой из автономных СРП (3.1), (3.2) при 
n = 1, M задача аналитического конструирования оптимального регулятора может быть решена 
путем, аналогичным задаче синтеза при одноканальном управлении одним объектом [27].

При рассмотрении процесса управления в обратном времени t = t * – t укороченные системы 
уравнений (3.1), (3.2) с “начальными” величинами Qsn(t)|t = 0, совпадающими с их конечными 
значениями Qsn(t *), s = 1, 2, принимают следующий вид:

	
( ) ( ) ( ) ( )

( ) ( ) { }

∗ ∗ ∗= m − y t − h y y t
t

= = = ∈

*
12 * *

1 2

* * *

1
, , , , ,

2

0 , 1, , 1,2, 0,1 .

ssn
sn sn sn s s sn jsj

sn sn

dQ
Q k u k x

d

Q Q t n M s j

	 (3.3)
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Интегрирование уравнений (3.3) с управлением us
*(t) в виде (2.4) приводит к явной форме 

представления их решений в зависимости от t, параметров *
sny  и конечного состояния объекта 

* *( ),nQ t  n = 1, M:

	
( ) ( )

( ) ( ) { }

m − m − −m −

=

−
m − −t

∗ ∗

y
m = − − −

m + m

− h y y t t = = ∈

∑

∫

0
2 2 2* * *

*
2 *

*
( ) ( ) ( )* * *

2 2
1

1 ( ) ( )
1 2

0

1
, ( )

2

, , , , 1, ; 1,2, 0,1 .

s
sn sn si

sn

N
t t t t t tsi si

sn sn sn sn
sn sii

t t
t t s

sn jsj

k
Q t Q t e k e e

k e x d n M s j



	 (3.4)

Полагая здесь, согласно (2.3), для конечного значения ys
*(t *) вектора сопряженных пере-

менных:

	 ( )y = y* ** *( ) ( ) ,s snt t  1,n M= ; ( )y = y* *( ) ,sn snt   n = 
—
1, 

—
N

—
s
0;  y =** ( ) 0sn t , 0 1,sn N M= + , 	 (3.5)

и ( )= m* *( ) ( , ) ,s sn snQ t Q t  n = 1, M, представим равенства (3.4) в векторно-матричной форме:

	 ( )* * * (1)* * * * *
1( ) ( ) ( ) ( ) ( ) ( ) , 1, ,s s s s s sn snQ t B t t Q t B t t t k H t t n M= − + − y − − = 	 (3.6)

где M × M-матрицы

	 ( )
( )m − −m − m −  − = − = −   

m + m  

2 2 2 ** *( ) ( ) ( )* *
1 2 2

( ) diag ; ( ) ,
2

sn si snt t t t t tsn si
s s

sn si

k k
B t t e B t t e e  , 1,n i M= ,	 (3.7)

и Hsn(t * – t) – значение последнего интеграла в (3.4). Согласно (2.1), здесь 

	 y = − y* ** *( ) ( ) ( ),s s st B t t t  ( )y = y =* *( ) ( ) ,  1, .s snt t n M 	 (3.8)

Подставляя (3.8) в (3.6), найдем искомую зависимость ys
*(t) от Q*(t) для 0 ≤ t < t *: 

	 y = − − − + − −* * * (1)* * * * *
1( ) ( ) ( ) ( ) ( ) ( ) ( ),s s s s s s s st A t t Q t A t t Q t A t t K H t t 	 (3.9)

где

	 ( ) 1*
1s s sA t t B B

−− =    , ( )*
1s s sA t t A B− = , ( ) ( ) ( ) ( )( )1 1* *

s s sn snK H t t k H t t− = − , 1,n M= ,	 (3.10)

и Qs
*(t *) определяется по результатам решения задачи программного управления при началь-

ном состоянии, фиксируемом наблюдением значений Qs(0). Последующая подстановка (3.9) 
в уравнение (2.4) для программного управляющего воздействия приводит с учетом соотно-
шений (2.1), (3.5) к линейному закону синтеза оптимальных регуляторов с нестационарными 
коэффициентами обратных связей для каждого из объектов СРП (1.1)–(1.3) при m = 1 и m = 2:

	

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )
( )

* * * * *
1

1* *

1 1 1
,

2 2 2

,

, 1,2, 1, .

s s s s s s s s s s

s s s

s sn

u Q t K t K A t t Q t K A t t Q t

A t t K H t t

K k s n M

= y = − − − +

+ − −

= = =

	 (3.11)

Здесь матрицы As, A1s представляются, согласно (3.7), (3.10), известными функциями 
времени. Нетрудно показать, что при нулевой матрице B1s в условиях t = t * сохраняется 
непрерывное приближение us

*(Qs, t ) к us
*(Qs, t *), непосредственно определяемому по алгоритму 

(2.4).
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Переход в (3.11) к измеряемому выходу объекта Qsu(xsu, t) = (Qsu(xsui, t)) в ls точках xsui ∈ [xos, x1s], 
i  = —1,— ls, задается, согласно (1.10), векторно-матричным уравнением наблюдения:

	 ( ) ( ),su su su sQ x t Q t= j , ( ),su sn sn suix j = j m  , 1,n M= , 1, si l= , 1,2s = .	 (3.12)

В условиях ls < M неполного измерения состояния для восстановления вектора Qs(t) по зна-
чениям Qsu(xsu, t) требуется построение наблюдателя состояния полного или пониженного по-
рядка [4]. Если по условиям требуемой точности моделирования объекта можно ограничиться 
учетом только Ns

0 первых составляющих Qs(t) в (3.1), (3.2), то Qs(t) непосредственно находится 
решением системы уравнений (3.12) при ls = Ns

0 = M:

	 ( ) ( )1 ,s su su suQ t Q x t−= j .	 (3.13)

Подстановка (3.13) в (3.11) приводит к линейному алгоритму оптимального управления по 
наблюдаемому выходу объекта:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1* * 1 * * * * *
1

1 1
, , .

2 2s su s s su su su s s s s s su Q t K A t t Q x t K A t t Q t A t t K H t t−= − j − − + − − 	(3.14)

4. Оптимальное управление взаимосвязанными граничными условиями неоднородными темпе-
ратурными полями неограниченных пластин. В качестве примера, представляющего самостоя
тельный интерес, рассмотрим задачу двухканального оптимального по энергопотреблению 
управления температурным полем физически неоднородной системы, образуемой при ин-
дукционном нагреве двух металлических пластин с различными физическими свойствами 
в условиях идеального теплового контакта на их соприкасающихся поверхностях. Подобные 
системы являются базовым элементом различных многослойных структур и конструкций, на-
шедших широкое применение в технологической теплофизике [24, 28, 29].

4 . 1 .  М а т е м а т и ч е с к и е  м о д е л и  п е р в о г о  п р и б л и ж е н и я . Пусть взаимосвязан-
ные температурные поля Q1(x1, t) и Q2(x2, t) такой системы описываются линейными одномер-
ными неоднородными уравнениями теплопроводности вида (1.1) для двух неограниченных 
пластин [24]:

	
( ) ( ) ( ) ( )

2
1 1 1 1

1 1 1 12
1 11

, , 1Q x t Q x t
a W x u t

t cx

∂ ∂
= +

∂ g∂
, ( )1 10,x R∈ , 0t > ,	 (4.1)

	
( ) ( )

( ) ( )
∂ ∂

= +
∂ g∂

2
2 2 2 2

2 2 2 22
2 22

, , 1
,

Q x t Q x t
a W x u t

t cx
  ( )∈2 20, ,x R  0t > ,	 (4.2)

с заданными начальными состояниями:

	 ( ) =1 1,0 0;Q x   ( ) =2 2,0 0,Q x 	 (4.3)

граничными условиями:

	
∂

l = = <
∂
1 1

1 1
1

( , )
const 0;

Q R t
q

x
 

∂
l = = <

∂
2 2

2 2
2

( , )
const 0,

Q R t
q

x
	 (4.4)

условиями сопряжения на границах x1 = x2 = 0 вида (1.3)–(1.5):

	
( ) ( ) ( ) ( ) ( ) ( ) ( )

2
1 2 1 11

1 20 0 02 02
1

0 0

0,
= 0, , ,

Rt
Q t

L h L G y t Q y dyd
x

∂
l = = − t t t

∂ ∫ ∫ ,	 (4.5)
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	 ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

2 1 2 2
2 10 0 01 01

0 0

0, = 0, , ,

Rt

Q t L h L G y t Q y dyd= = − t t t∫ ∫ 	 (4.6)

и внутренними сосредоточенными, нестесняемыми дополнительными ограничениями кусоч-
но-непрерывными управляющими воздействиями u1(t), u2(t) по мощности электромагнитных 
источников тепла при заданном характере W1(x1), W2(x2) их пространственного распределения 
в процессе индукционного нагрева [3, 30]. Здесь a1, a2, l1, l2, c1, c2, g1, g2 – заданные отли-
чающиеся друг от друга в (4.1) и (4.2) теплофизические постоянные. В условиях идеального 
теплового контакта [24] в (4.5), (4.6)

	 ( ) ( )1 2
20

2

0,Q t
L

x

∂
= l

∂ ;	 (4.7)

	 ( ) ( )2
10 0,L Q t= ,	 (4.8)

и тогда L0
(1), L0

(2) представимы в общей форме (4.5), (4.6) с функциями Грина переходных бло-
ков [9]:

	 ( ) ( ) ( ) ( )1
202 0, ,G y t y t− t = −l d d − t′ ; ( ) ( ) ( ) ( )2

01 0, ,G y t y t− t = d d − t ,

где d и d′ – дельта-функции и их производные пространственного и временного аргументов.
Условие сопряжения (4.5), (4.7) может быть записано в следующей форме:

	

( ) ( )

( ) ( )

1 *
1

1

2 *
2

2

0,
,

0,
,

Q t
q t

x

Q t
q t

x

 ∂
−l = ∂


∂−l = ∂

	 (4.9)

где q*(t) – некоторая заведомо неизвестная функция времени, которая может рассматривать-
ся в роли граничных условий на границах соответственно первой и второй пластин в точках 
их контакта x1 = x2 = 0. В таком случае, если считать эту функцию заданной, взаимосвязанная 
СРП (4.1)–(4.8) формально разделяется на два автономных объекта управления, описываемых 
независимыми друг от друга начально-краевыми задачами при граничных условиях 2-го рода 
[24]:

	

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

∂ ∂
= + ∈ >

∂ g∂

∂ ∂
= l = − l =

∂ ∂

2
1 1 1 1

1 1 1 1 1 12
1 11

1 1 1 *
1 1 1 1 1

1 1

, , 1
, 0, , 0,

, 0,
,0 0; ; ,

Q x t Q x t
a W x u t x R t

t cx

Q R t Q t
Q x q q t

x x

	 (4.10)

	

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

∂ ∂
= + ∈ >

∂ g∂

∂ ∂
= l = −l =

∂ ∂

2
2 2 2 2

2 2 2 2 2 22
2 22

2 2 2 *
2 2 2 2 2

2 2

, , 1
, 0, , 0,

, 0,
,0 0; ; ( ).

Q x t Q x t
a W x u t x R t

t cx

Q R t Q t
Q x q q t

x x

	 (4.11)

Второе условие сопряжения (4.6), (4.8) будет использовано в дальнейшем для фактического 
определения q*(t).

Применение метода конечных интегральных преобразований с весовой функцией 
rm(xm) = 1/am к уравнениям (4.10), (4.11) приводит, подобно (1.9), к их модальному описанию 
следующего вида [9]:

	
( ) ( ) ( )

( )

∗
= −m + + j m + j m

g l l

= = =

2 1 ( )
, ,0 ,

,0 0,  1,2,  0, ,

mn m
mn mn mn m mn mn m mn mn

m m m m

mn m

dQ q q t
Q W u t R

dt c

Q x m n M

	 (4.12)
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с последующим представлением Qm(xm, t), m = 1, 2, в форме суммы M первых членов бесконеч-
ного ряда вида (1.10):

	 ( ) ( ) ( )
0

, ,m m mn mn mn m
n

Q x t Q t x
∞

=

= j m∑ .	 (4.13)

Здесь

	 ( )
,  0,

1
, cos ;  ;  

,  1,
2

m

mmm
mn mn m mn mn

mmn m m

m

R
n

aax
nx n E

RE R R
n

a


=

  πj m = m = π =     ≥


	 (4.14)

mnW  – моды функций ( )mm xW  в (4.10), (4.11) [9]:

	 ( )
0

1
cos

mR
m

mn mm m
mm mn

x
x nW W dx

Ra E
 
π=   ∫ ,

где при индукционном нагреве пластины

	 ( ) ( ) ( )
2 2ch cos

2
sh sin2 2

m m
m m

m m
mm m

m m

x x
R R

xW

   z z−      
= z

−z z

и zm– характерный параметр, определяемый глубиной проникновения тока в металл [3, 30].
В соответствии с (1.6)–(1.9) в рассматриваемом примере требуется найти оптимальное век-

торное управление u * = (u1*, u2*) объектом (4.12) по мощности электромагнитных источников 
тепла, обеспечивающее за фиксируемое заранее время t * требуемую точность равномерного 
приближения конечного температурного распределения к заданному состоянию Qm

** = const:

	 ( ) ∗∗∗
∈

≤ e =−
[0, ]

max ,  1, 2,,
m m

mm mmx R
mQ Qx t 	 (4.15)

при минимальном значении критерия оптимальности (1.7).
4 . 2 .  Т е м п е р а т у р н о е  п о л е  п р и  о п т и м а л ь н о м  п р о г р а м м н о м  у п р а в л е н и и 

с  з а д а н н ы м  г р а н и ч н ы м  в о з д е й с т в и е м  q * ( t ) . Ограничимся далее, подобно [3, 30], 
типичным для приложений случаем, при котором в (4.15) задаются минимально достижимые 
значения минимакса ( )2,2

1mine , ( )2,2
2mine  в цепочке неравенств (2.6), полагая в (4.15)

	 ( )2,2
1 1mine = e , ( )2,2

2 2mine = e .	 (4.16)

Этому случаю соответствует двухпараметрическая процедура ys
(Ns)-параметризации управ-

ляющих воздействий (2.3) при Ns = Ns
0 = 2, s = 1,  2, согласно (2.7), с параметрическим представ-

лением оптимальных программных управлений в форме (2.4):

	 ( ) ( ) −m −
∗

=

y = m y∑
2 *

1
( )* *

0

1
, ,

2
sn t t

s s sn sn sn
n

u t W e ,  s = 1,  2.	 (4.17)

В такой ситуации при достаточно просто реализуемой структуре us*(ys*, t) в виде суммы двух 
экспонент (4.17) достигается, как правило, достаточно высокая точность e(2,2)

mins  равномерно-
го приближения Qm(xm, t *) к Qm

**, отвечающая технологическим требованиям широкого круга 
инженерных приложений [3, 30].
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Интегрирование уравнений (4.12) с параметризованным управлением (4.17) приводит 
к следующим выражениям для температурных состояний Q1(x1, t), Q2(x2, t), описываемых их 
разложениями в ряды (4.13) по собственным функциям (4.14) в форме явных зависимостей 
Qm(xm, t, q*), m = 1, 2, от q *(t) и векторов параметров y = y y* *

1* 10 11( , ),  , y = y y* *
2* 20 21( , )   [9]:

	

( ) ( ) ( ) ( )

∗

−m −t
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   = t t + π t t +  
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m mn mn mn

m

e
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(4.18)

Здесь

	 0

0

1
, ( )cos

mR
m

m mn m m
m m m m

x
K W W x n dx

c R R
 

= = π g  ∫ .

При описании температурных состояний Q1 и Q2, взаимосвязанных общим граничным 
воздействием q *, в форме (4.18), согласно [9], программное оптимальное управление (4.17) 
приводится к виду:

	 ( ) ( )21
0*

0

1
, , 1,2.

2
sn t t

sns s sn
n

u t sW e
∗−m∗ −

∗
=

 
y = =y 

  
∑  	 (4.19)

4 . 3 .  О п р е д е л е н и е  г р а н и ч н о г о  в о з д е й с т в и я  q * ( t ) . Второе условие сопряжения

	 ( ) ( )1 20, 0,Q t Q t=

в (4.6), (4.8) приводит к равенству температурных состояний Q1 = Q2, описываемых, согласно 
выражениям (4.18), в точках x1 = x2 = 0, которое можно рассматривать как интегральное урав-
нение относительно q*(t).

Ограничиваясь для поиска первых приближений q*(t) только первыми членами рядов в 
(4.18), получим его решение q*(p) в изображениях Лапласа с использованием теоремы Бореля 
операционного исчисления в виде суммы простых дробей с единичными числителями и 
полиномами первой или второй степени в знаменателе, что приводит в итоге к представлению 
q*(p) в форме дробно-рациональной функции комплексной переменной p:

	 ( ) ( )
( )

1 1 2*
1 2

1 2

, ,
, ,

, ,

D p
q p

D p
∗ ∗

∗ ∗
∗ ∗

y y
y y =

y y
,

где D1 и D – многочлены четвертой и пятой степеней, коэффициенты которых являются из-
вестными линейными функциями y1*, y2*, определяемыми в соответствии со структурой вы-
ражений (4.18).

Последующий переход к оригиналу по теореме разложения приводит к приближенному 
представлению искомой функции в следующем виде:
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	 (4.20)

в пренебрежении двумя экспонентами с отрицательными показателями степени. Здесь
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	 ( )( ) 2 22 2
2 1 2 11 1 2111 21 2 2K Kb K K−= + m − mm + m ; ( ) 2 2

2 1 11 21K Kc −= m m .

Подстановка (4.20) в (4.18) позволяет исключить зависимость Q1 и Q2 от q *(t). При t = t * 
соответствующие конечные температурные состояния, описываемые, согласно (4.18), (4.20), 
представляются после выполнения операций интегрирования в (4.18) в форме явных функций 

( )1 1 1 2, ,Q x ∗ ∗y y  и ( )2 2 1 2, ,Q x ∗ ∗y y  только своих аргументов:
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	(4.22)

4 . 4 .  Р е ш е н и е  з а д а ч и  п р о г р а м м н о г о  у п р а в л е н и я . Теперь решение ЗПО 
(2.8), (2.9) сводится к выполнению равенств (2.10) в условиях (2.7), (2.11) с подстанов-
кой ( )1 2, ,m mQ x ∗ ∗y y , согласно (4.21), (4.22). В силу альтернансных свойств (2.11) при 

0 0 1 3m mR N= + =  в случае em = em
(2,

m
2)
 in, m = 1, 2, и физических закономерностей, определяющих 

форму кривых пространственного распределения температурных полей обеих пластин в кон-
це оптимального процесса индукционного нагрева [3, 30], осуществляется редукция равенств 
(2.10) к двум различным вариантам уравнений (2.12), (2.13) для каждой пластины, представ-
ляемых в заранее фиксируемой форме по выбору знака em в (2.12) (см. далее рис. 1):
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Совместное рассмотрение равенств (4.23), (4.24) приводит в итоге к следующим возмож-
ным вариантам расчетных систем уравнений вида (2.12), (2.13):

система 8 уравнений (4.23) при m = 1,  2 относительно 8 неизвестных 0m
∗y , 1m

∗y , ( )2,2
minme , 0

mx ;

система 10 уравнений (4.24) при m = 1,  2 относительно 10 неизвестных 0m
∗y , 1m

∗y , ( )2,2
minme , 

0
1mx , 0

2mx ;
система 9 уравнений (4.23) для m = 1 и (4.24) для m = 2 относительно 9 неизвестных 10

∗y , 
11
∗y , 20

∗y , 21
∗y , ( )2,2

1mine , ( )2,2
2mine , 0

1x , 0
12x , 0

22x ;
система 9 уравнений (4.23) для m = 2 и (4.24) для m = 1 относительно 9 неизвестных 10

∗y , 
11
∗y , 20

∗y , 21
∗y , ( )2,2

1mine , ( )2,2
2mine , 0

2x , 0
11x , 0

21x .
Применительно к конкретным параметрическим характеристикам рассматриваемого 

объекта (4.10), (4.11) или оказывается разрешимой одна из этих систем уравнений, или из реа-
лизуемых указанных вариантов выбирается тот из них, на решениях которого достигается ми-
нимальная величина критерия оптимальности в (2.8). Последующая подстановка найденных 
величин y1*, y2* в (4.17) окончательно определяет искомое программное управление (4.19).
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4 . 5 .  С и н т е з  о п т и м а л ь н о г о  р е г у л я т о р а .  Подстановка (4.20) в (4.12) определяет 
модальное описание объектов управления (4.10) и (4.11) несвязанной системой уравнений 
вида (3.1), (3.2), где в роли функций hj

(1) и hj
(2) фигурирует взвешенная сумма qm и найденного, 

согласно (4.20), граничного воздействия q*(t, y1*, y2*). Процедура аналитического конструи
рования оптимальных регуляторов, осуществляемая по схеме (3.3)–(3.14) с программным 
управлением su∗  в (4.19), приводит для рассматриваемого примера при N1

0 = N2
0 = 2 к линейным 

законам ( ),s su Q t∗
 , ( ),sus Q tu∗  обратной связи (3.11), (3.14), где в соответствии с (4.12)
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(4.25)
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Рис. 1. Конечные температурные состояния в оптимальном процессе двухканального управления 
индукционным нагревом: а – Q1(x1, y1*, y2*), б – Q2(x2, y1*, y2*).
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Здесь следует подставить q*(t, y1*, y2*) в виде (4.20).
Некоторые расчетные результаты, полученные при индукционном нагреве двух физически 

неоднородных пластин из стальных сплавов для K1 = 2.09 · 10–6 м2 · град/(Вт · с), K2 = 2.34 · 10–6 
м2 · град/(Вт · с), R1 = R2 = 0.1 м, z = 4, q1 = –60 Вт/м2, q2 = –300 Вт/м2, Q1

** = Q2
** = 560 оС, t * = 1050 c, 

представлены на рис. 1, 2.
На рис. 1 показаны распределения температуры по толщине пластин в конце оптимально-

го по энергопотреблению процесса нагрева, найденные при решении 7
10 5.83 10 ,∗y = ⋅  

7
11 6.62 10∗y = ⋅ , 7

20 7.88 10∗y = ⋅ , 7
21 3.76 10∗y = ⋅ , ( )2,2

1min 4.12 Ce =  , ( )2,2
2min 19.17 Ce =  , 0

1 0.024 мx = , 
x1

0
2 = 0.03 м, x2

0
2 = 0.08 м указанного в разд. 4.4 варианта 3 компоновки расчетной системы урав-

нений альтернансного метода. Рис. 2 иллюстрирует поведение управляющих воздействий  
( ), , 1, 2,mum Q tu m∗ =  изменяющихся во времени по алгоритму (3.14), (4.25) в зависимости от те-

кущих значений измеряемых сигналов обратной связи ( ) ( )( ), , , 1, 2,mu muimu mux t x tQ Q i= =  в точ-
ках 1 0mux = , 2mu mx R= , 1,2m = .

Заключение. Предлагаемый метод решения задачи двухканального управления с мини-
мальным энергопотреблением взаимосвязанными граничными условиями параболическими 
системами с распределенными параметрами разработан применительно к характерным для 
приложений оценкам целевых множеств конечных состояний объекта в равномерной метри-
ке. Используемый способ вычисления программных управляющих воздействий реализуется 
применением альтернансного метода параметрической оптимизации на конечномерном мно-
жестве финишных значений сопряженных переменных. Полученные уравнения оптимальных 
регуляторов сводятся к линейным алгоритмам обратной связи по наблюдаемым переменным 
с фиксируемыми предварительным расчетом нестационарными коэффициентами передачи. 
Приведен представляющий самостоятельный интерес пример двухканальной оптимизации 
процесса нагрева двух неограниченных пластин в условиях идеального теплового контакта на 
их граничных поверхностях.
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