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Рассматривается задача автоматического обнаружения и классификации объектов на трехмерных од-
ноканальных растровых изображениях. Объекты могут иметь малую контрастность и значительныую 
изменчивость формы, что затрудняет построение модели в явном виде. Для решения используются 
методы машинного обучения по размеченной базе прецедентов. Предлагается двухэтапная обработ-
ка, на первом шаге производится обнаружение объектов на изображении, на втором – уменьшение 
доли ложноположительных результатов и классификация. Применяется подход глубокого обучения 
с единым входом и тренировкой на одновременное решение нескольких задач. Решается актуальная 
практическая задача построения клинически применимой автоматической системы поддержки при-
нятия решений при обнаружении и определении категорий переломов ребер по данным снимков ком-
пьютерной томографии. Проведены вычислительные эксперименты на общедоступном наборе данных 
RibFrac. Показано, что предложенная система обеспечивает значение чувствительности обнаружения 
0.935 при среднем количестве ложположительных предсказаний на одно изображение 4.7. Приводится 
сравнение полученного алгоритма с существующими методами на основании количественных мер.
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The issue of automatic object detection and categorization in three-dimensional, single-channel, raster 
images is considered. Objects may have low contrast and substantial shape variability, making it challenging 
to explicitly construct a model. The proposed solution employs machine learning techniques based on a 
labeled database of use scenarios. A two-step algorithm is presented, with the first stage being the detection of 
objects within the image and the second being the reduction of false positives and object categorization. Deep 
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learning approach is applied with a single input and trained for the simultaneous solution of multiple tasks. 
The practical goal of developing a clinically viable automatic decision support system to detect and classify 
rib fractures based on CT scans is being solved. Computational experiments were conducted on the publicly 
available RibFrac dataset. The proposed system was shown to achieve a detection sensitivity of 0.935, with 
an average number of false positive predictions per image of 4.7. The resulting algorithm was compared with 
existing methods using quantitative measures.

Keywords: computed tomography, rib fracture detection, rib fracture classification, deep learning

Введение. Задачи обнаружения, локализации и классификации объемных объектов на трех-
мерных изображениях значительно сложнее своих двумерных аналогов как с точки зрения 
формализации и алгоритмизации, так и в вычислительном отношении. Человек восприни-
мает большинство трехмерных объектов лишь как их поверхности, но не как действитель-
но трехмерную структуру. В связи с этим большинство “классических” (не основанных на 
машинном обучении) решений при обработке трехмерных данных сразу сводятся к построе- 
нию поверхностей. Кроме того, сама алгоритмизация работы с трехмерными данными су-
щественно сложнее. В результате разнообразие и качество решения задач для трехмерных 
изображений существенно уступают таковым для двухмерных. Методы машинного обучения, 
опирающиеся на извлечение взаимосвязей на базе обучающих данных (набора прецедентов), 
свободны от таких ограничений. По этой причине методы машинного обучения даже на осно-
вании небольшого набора прецедентов достигают результатов, сравнимых или превосходящих 
по качеству получаемые “классическими” подходами. Все сказанное в полной мере относится 
к медицинской компьютерной томографии (КТ).

КТ дает возможность получить трехмерное изображение структур тела человека с высокой 
детализацией и является одним из наиболее эффективных методов обнаружения переломов 
ребер, позволяя находить значительно больше травм в области грудной клетки в сравнении 
с рентгенографией. Однако идентификация переломов ребер на тонкосрезовых КТ-изобра-
жениях с аксиальным пространственным разрешением 0.5–1.5 мм – трудоемкая задача для 
медиков. В силу наличия у ребер сложной формы и их диагонального расположения на срезах 
КТ-изображений, некоторые виды переломов тяжело диагностируются и имеют низкий про-
цент обнаружения в клинической практике.

На практике для анализа КТ-изображений грудной клетки при обнаружении переломов 
ребер используются алгоритмы криволинейной развертки ребер, основанные на извлечении 
осевой линии каждого ребра с их последующим проецированием в двухмерную плоскость [1] 
или преобразованиях каждого аксиального среза изображения через цилиндрическую проек-
цию [2]. Данные методы позволяют снизить время анализа одного исследования врачом-ди-
агностом, однако имеют более низкую чувствительность по сравнению с исходным трехмер-
ным КТ-изображенем [3, 4]. Также было отмечено [4], что применение двухмерной развертки 
приводит к возникновению ложноположительных результатов, некорректной оценке величи-
ны смещения ребер при переломах с диастазом, а также снижению коэффициента согласо-
ванности мнений экспертов.

Последние достижения в  области искусственного интеллекта и  компьютерного зрения 
привели к быстрому внедрению данных технологий в клиническую диагностику и анализ ме-
дицинских изображений. Глубокое обучение позволило достичь высоких результатов во мно-
гих задачах медицинской диагностики. В последние годы активно развивался нейросетевой 
подход к проблеме семантической сегментации переломов ребер на основании снимков КТ. 
Большая часть данных методов базируется на использовании глубоких сверточных нейросе-
тей 3D U-Net [5], DeepLab v3+ [6], 3D ResNet [7] и их комбинаций, например FracNet [8] 
и FracNet+ [9].

Привлечение дополнительной информации о сегментационных масках ребер для обнару-
жения переломов дает значительное улучшение качества работы алгоритмов. Так, в работе [8] 
рассматривается метод предсказания переломов ребер с помощью скользящего окна по пред-
варительно вычисленным областям расположения ребер. Продолжая данную идею, авторы 
статьи [9] предлагают добавлять сегментационные маски ребер, предварительно приведен-
ные к необходимому пространственному разрешению и преобразованные набором сверточ-
ных модулей, на каждом слое энкодера и декодера сети U-Net. Для выделения области ребер 
могут применяться алгоритмы глубокого обучения, основанные на сегментации трехмерных 
воксельных изображений или разреженных облаков точек, например моделями PointNet [10] 
или DGCNN [11].
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Знание о расположении ребер может быть привлечено при обучении модели для решения 
нескольких задач. Например, в SA-FracNet [12] предлагается одновременное решение зада-
чи сегментации переломов и определение их границы с учетом формы ребер. В работе [13] 
приводится схема обучения, сочетающая решение задачи детекции переломов на основании 
двухмерных аксиальных срезов и локализации ребер с использованием трехмерного КТ-изо-
бражения. Данный подход позволяет добиться повышения эффективности обучения и точно-
сти прогнозирования по сравнению с обучением моделей по отдельности.

С  увеличением разнообразия решаемых методами глубокого обучения задач начинает 
развиваться подход, представляющий из себя автоматический поиск подходящей архитек-
туры в решении конкретной задачи. Одним из наиболее популярных фреймворков (набо-
ров инструментов), используемых при решении задач обработки двухмерных и трехмерных 
медицинских изображений, является nnU-Net [14]. Фреймворк представляет из себя метод 
семантической сегментации, который автоматически адаптируется к заданному набору дан-
ных. На основании анализа статистик предоставленных обучающих примеров производится 
автоматическая настройка соответствующего алгоритма сегментации на базе нейросетевой 
модели U-Net [5]. Настройка подразумевает определение оптимальной конфигурации сети, 
алгоритмов предварительной обработки изображений и аугментаций данных, используемых 
в процессе обучения. Инструмент Auto3Dseg [15] также реализует методы поиска оптималь-
ной архитектуры среди заданного класса сегментационных моделей, включающих в себя Swin 
UNETR [16], UNet [5] и SegResNet [17]. Алгоритмы были апробированы на широком наборе 
медицинских тестовых данных и продемонстрировали высокие показатели мер качества сег-
ментации и детекции во многих соревнованиях по локализации структур организма и обна-
ружению патологий.

С ростом объемов открытых наборов данных с медицинскими изображениями различных 
модальностей становится распространенной практика применения предобученных моделей 
в решении более узких медицинских задач, например STU-Net [18], которая построена на 
основании фреймворка nnU-Net. Предварительно обученная на крупномасштабном наборе 
данных TotalSegmentator [19] модель STU-Net была применена авторами работы [9] в реше-
нии задачи сегментации переломов ребер и продемонстрировала более высокие результаты 
в сравнении с подходом, реализующим обучение аналогичной архитектуры с нуля.

Предварительное обучение базовых моделей для последующего решения целевой задачи 
может быть выполнено с применением техник обучения с частичным привлечением учителя 
(англ. semi-supervised learning). Использование данного подхода позволяет включить в обу-
чение значительно больше КТ-изображений, привлекая объемы немаркированных снимков, 
число которых зачастую значительно превосходит количество размеченных сканов. В  ра-
боте [13] предлагается применение техники, основанной на контрастном обучении (англ. 
contrastive learning) на уровне пикселей, для предварительной настройки весов базовой мо-
дели с последующей тонкой настройкой параметров сети для решения задачи сегментации 
переломов ребер.

1. Постановка задачи. На вход подается КТ-изображение области I, являющееся трехмер-
ной матрицей размерами W × H × D, содержащей целые числа из диапазона от –1024 до 3071, 
которые задают значение плотности каждого вокселя изображения по шкале денситометриче-
ских показателей Хаунсфилда (англ. hounsfield units (HU)). Требуется выделить области изо-
бражения, на которых присутствуют объекты (переломы ребер), и определить класс каждого 
объекта из заданного списка возможных клинических категорий переломов: консолидирован-
ный перелом, перелом с диастазом (смещением), перелом без диастаза.

С точки зрения решения задачи сегментации результат работы алгоритма может быть опи-
сан в виде сегментационной маски объектов, представляющей собой трехмерную матрицу F, 
которая соответствует размерам исходного изображения I – W × H × D, и списка классов 
объектов C. Значения вокселей сегментационной маски F являются целыми числами в диапа-
зоне от 0 до N, где N – количество обнаруженных на изображении объектов. Воксели маски, 
имеющие значение, равное i N∈[ ]1, , описывают область локализации объекта i, принадлежа-
щего к классу C[i]. Значение O вокселей маски соответствует заднему плану и не описывает 
объекты. Обозначая через Fi набор координат, соответствующих области сегментационной 
маски Fi = {(x, y, z), если F(x, y, z) = i}, получаем область локализации объекта на исходном 
изображении I I x y z x y z FF ii

= ( ) ( ) ∈{ }, , : , ,= {I (x, y, z):(x, y, z) ∈ Fi} и ее класс C[i].
1.1. З а д а ч а   д е т е к ц и и. В большинстве работ, посвященных решению задачи локализа-

ции и классификации переломов ребер, рассматриваются методы семантической сегментации, 
использующие в качестве целевых объектов предсказания воксельные сегментационные маски.
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Однако начальная постановка задачи сегментации как выделения области исходного КТ- 
изображения имеет несколько недостатков, усложняющих получение результатов. Во-первых, 
внешний вид переломов сильно варьируется между различными классами. Переломы с диаста-
зом имеют различной степени выраженности разрывы между двумя частями одного ребра. Сег-
ментация патологии такого вида может интерпретироваться неоднозначно – к сегментационной 
маске перелома могут быть отнесены различные объемы кости на концах частей ребра и окру-
жающего вещества, находящегося в разрыве. В то же время консолидированные переломы, 
являющиеся полноценным восстановлением кости после перелома, не имеют четких границ. 
Во-вторых, на данный момент не существует единой методологии, регламентирующий прави-
ла нанесения разметки для различных классов переломов. Маска области перелома (ее фор-
ма, объем и ориентация) сильно зависит от специалиста, выполняющего разметку. Разметка 
существующих наборов данных КТ-снимков пациентов с переломами составляется широким 
кругом рентгенологов и врачей-диагностов, каждый из которых придерживается собственно-
го метода определения объема и формы области перелома. Так, в открытых наборах данных 
переломы одного и того же вида, размеченные разными специалистами, могут иметь объемы 
сегментационных масок, отличающиеся в 3 и более раз. В некоторых случаях экспертом может 
быть размечена вся область ребра, содержащая перелом, в других – только непосредственная 
область перелома. Часто эксперты делают разный отступ разметки от границ ребра. Описанные 
различия в сегментационной разметке переломов со смещениями представлены на рис. 1. На 
изображениях 1, 3 и 7 маска выступает за границы кости самого ребра. Для изображений 5, 6 
и 8 маска перекрывает всю или практически всю область ребра, в то время как для переломов 2 
и 4 к сегментационной маске отнесены меньшие объемы костной ткани.

Исходя из этого, задача переформулирована как задача определения параллелепипеда, 
ограничивающего область интереса (bounding box), что принято называть задачей детекции. 
При необходимости можно перейти к сегментационным маскам путем выделения области 
объекта, но уже внутри ограничивающего параллелепипеда, а не на всем изображении.

В терминах задачи детекции результат представляется в виде набора ограничивающих па-
раллелепипедов В, каждый элемент которого задается шестью координатами – минимальными 
и максимальными координатами вершин ограничивающего параллелепипеда по трем осям:

B i x x x y y y z z z
i i i i i[ ] = ∈ ∈] [ ∈] [( ) ( ) ( ) ( ) ( )

min max min max min ma, , , , , xx
i i N( )









 ∈, ,� � 1 ,                         (1.1)

и списка классов объектов С. Количество элементов списков В и С совпадает и равно коли-
честву обнаруженных объектов N. Обозначим как IВ[i] область изображения I, заключенную 
внутри параллелепипеда B[i]. Формально
	 IВ[i] = {I (x, y, z):(x, y, z) ∈ B[i]}. 	  (1.2)

Область IВ[i] является локализацией объекта i, относящегося к классу C[i].
1.2. П е р е х о д   к   з а д а ч е   д е т е к ц и и. Преобразование от сегментационных масок 

к ограничивающим параллелепипедам достаточно просто и сводится к вычислению мини-
мальных и максимальных координат вокселей маски по трем осям. Пусть F – сегментацион-
ная маска объектов, В – список ограничивающих параллелепипедов, задаваемый изначально 

Рис. 1. Примеры, демонстрирующие различие в сегментационной 
разметке переломов со смещениями.



ОБНАРУЖЕНИЕ И КЛАССИФИКАЦИЯ ОБЪЕКТОВ      

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 6 2024

115 

как пустой. Пусть Fi = {(x, y, z):M(x, y, z) = i} – сегментационная маска перелома i в коорди-
натах M. Тогда прямоугольные границы маски перелома i с учетом отступа в 1 воксель могут 
быть записаны как

x x x y z F
i

imin max min( ) = ( ) ∈{ } +( )0 1, : , ,� � ,

x W x x y z Fi
imax min max( ) = ( ) ∈{ } +( )', : , ,� � 1 .

Аналогично определяются остальные границы параллелепипеда (1.1) – y
i

min
( ) , y i

max
( ) , z

i
min
( ) , z i

max
( ) .

2. Архитектура системы. Представленная система методов решения задачи локализации 
и классификации переломов ребер на КТ-изображениях имеет следующие основные блоки:

1) предварительная обработка КТ-изображения, включающая выделение области ребер ме-
тодом сегментации разреженного облака точек с применением модели PointNet++, приведе-
ние к целевому пространственному разрешению и нормирование интенсивности;

2) определение областей локализаций переломов ребер в виде набора ограничивающих па-
раллелепипедов с применением детекционной модели;

3) формирование итоговых детекционных предположений с учетом определенных экспе-
риментально оптимальных гиперпараметров отбора ограничивающих параллелепипедов;

4) разделение полученных локализаций переломов на клинические категории и удаление 
ложноположительных предсказаний с помощью классификационной модели.

Отдельно стоит отметить, что дополнительный выход детекционной сети, реализующий 
решение задачи семантической сегментации ребер, используется только в процессе обучения 
и может быть исключен на этапе применения модели при диагностировании переломов.

Общая архитектурная схема предлагаемой системы приведена на рис. 2.

Рис. 2. Архитектурная схема предлагаемого двухэтапного метода, включающего 
детектирование переломов с последующей их классификацией.
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2.1. П р е д о б р а б о т к а    д а н н ы х. Первоначальным этапом обработки КТ-исследова-
ний является приведение всех изображений к единому пространственному разрешению. Дан-
ное преобразование необходимо для выравнивания расстояний расположения анатомических 
структур относительно друг друга. В качестве целевого пространственного разрешения было 
выбрано медианное значение спейсинга для КТ-сканов из отобранной части исследований да-
тасета RibFrac – (1.25, 0.75, 0.75). Преобразование КТ-изображений к указанному простран-
ственному разрешению осуществлялось методом трилинейной интерполяции, преобразование 
соответствующих сегментационных масок путем интерполяции методом ближайших соседей.

Также важным этапом обработки исходных КТ-изображений, непосредственно влияющим 
на качество и скорость работы алгоритмов обнаружения целевых патологий, является пред-
варительное выделение области изображения, в котором анатомически предполагается лока-
лизация искомой патологии. В задаче обнаружения переломов ребер естественным ограниче-
нием области поиска выступает граница внутри грудной клетки, включающая в себя ребра. 
Непосредственное выделение области ребер позволяет исключить другие костные структуры 
(такие как ключицы, нижние элементы черепа и части позвоночника) из рассмотрения, что 
уменьшает общую ошибку обнаружения переломов и снижает количество ложноположитель-
ных предсказаний. Более того, это дает возможность уменьшить размер исходного изобра-
жения, тем самым сокращая время работы и количество используемой памяти, что особен-
но важно при обработке трехмерных изображений методами глубокого обучения с помощью 
сверточных нейросетей.

Для выделения целевой области на КТ-изображении может быть использован ряд методов, 
основанных на априорных знаниях о плотности структур и тканей, эвристических правилах, 
морфологических операциях, а также алгоритмах компьютерного зрения. Зачастую при сег-
ментации области интереса не требуется субвоксельная точность работы алгоритма. В силу 
данного факта при применении методов компьютерного зрения в решении данной задачи 
могут быть использованы изображения, предварительно переведенные в более низкое про-
странственное разрешение методами интерполяции. Таким образом, сегментация области 
грудной клетки, содержащей в себе ребра, может быть выполнена посредством применения 
сегментационных нейросетевых методов, например U-Net-подобных архитектур.

В статье для выделения области ребер предлагается использовать подход, основанный на 
сегментации облака точек алгоритмами глубокого обучения. Данный метод широко применя-
ется в задачах, связанных с сегментацией ребер, выделением центр-линий ребер и обнаруже-
нием переломов. Авторы работ [22, 23] рассматривают модель сегментации разреженного об-
лака точек PointNet++ [10] непосредственно для решения задачи определения маски каждого 
ребра и последующего выделения центральных линий. В работах [8, 9] применяется данный 
метод как вспомогательный при решении задачи сегментации переломов ребер.

Преобразование исходного КТ-изображения в облако точек осуществляется путем отсече-
ния вокселей по порогу 200 HU с последующей бинаризацией. Предварительно производится 
понижение линейного пространственного разрешения КТ-изображения в 2 раза в целях уско-
рения работы алгоритма и сглаживания отдельных вокселей высокой плотности. Полученное 
облако точек сегментируется на два класса (ребра и фон) с помощью модели PointNet++, 
обученной на случайных подвыборках размером 30 тыс. элементов из исходного облака точек. 
В процессе обучения модели минимизировалась функция потерь перекрестной энтропии.

Обучение модели происходило с использованием сегментационных масок ребер, представ-
ленных в датасете RibSeg v2 [22]. По аналогии с преобразованием исходных КТ-сканов осу-
ществлялось приведение разметки ребер к целевому пространственному разрешению с после-
дующим понижением разрешения в 2 раза путем интерполяции методом ближайших соседей.

Предсказание модели на этапе использования для всего облака точек проводилось путем 
последовательного выбора некоторого количества непересекающихся наборов по 30 тыс. то-
чек в каждом с последующим применением обученной модели для каждого из них. В силу 
отсутствия требования классификации каждой точки количество выборок не обязательно 
должно покрывать все облако точек – для достижения необходимой точности локализации 
области ребер может быть использовано небольшое число случайных выборок. Эмпирически 
установлено, что количество выборок, равное трем, обеспечивает баланс между скоростью ра-
боты и точностью локализации области ребер. Общая структура алгоритма сегментации ребер 
на базе разреженного облака точек приведена на рис. 3.

На основе полученной маски сегментации ребер вычисляются координаты ограничиваю-
щего параллелепипеда с добавлением отступа в 5 вокселей по каждому направлению и про-
изводится обрезание исходного изображения. Использование отступов позволяет уменьшить 
возможные погрешности модели сегментации и не терять информацию об анатомических 
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структурах на краях обрезанного изображения. Аналогичные преобразования применяются 
к соответствующим сегментационным маскам переломов и ребер.

В рамках разработки модели семантической сегментации ребер также был проанализирован 
метод сегментации воксельного КТ-изображения с помощью нейросетевой модели SegResNet, 
предварительно обученной на наборе данных TotalSegmentator [19]. Среднее время предсказа-
ния алгоритма с учетом предварительной обработки исследования, работы модели и финальной 
обработки результата, включающей фильтрацию малых областей сегментации и применение 
морфологических операций, составило 15–20 с, что в рамках разрабатываемой системы являет-
ся превышением допустимого времени работы. Использование архитектур на основании сети 
U-Net при аналогичном качестве требует большего времени на формирование предсказания.

Таким образом, предварительная обработка КТ-изображения и сегментационных масок 
переломов может быть представлена в виде следующего алгоритма:

1. Исходное изображение I и сегментационные маски переломов F размерами W × H × D  
преобразуются к пространственному разрешению (1.25, 0.75, 0.75) методами трилинейной ин-
терполяции и ближайших соседей соответственно. Результат данного шага – изображение I′  
и маски переломов F′ размерами W′ × H′ × D′.

2. Методом трилинейной интерполяции разрешение изображения I′ понижается в 2 раза 
и выполняется его преобразование в облако точек O путем отсечения вокселей по порогу 200 HU;  
O x y z I x y z= ( ) ( ) >{ , , : ' , , }/2 200 .

3. К трем случайным выборкам размерами 30 тыс. элементов в каждом из результирующе-
го облака точек применяется обученная модель сегментации PointNet++, классифицирую- 
щая каждую точку изображения на ребра (cr = 1) и фон (cbg = 0). Формируется набор меток 
классов S s o o Oi i i= = ( ) ∈[ ] ∈{ }PointNet 0 1, : . Тогда маска ребер может быть определена как 
R o O si i= ∈ ={ }: 1 .

4. Задаются границы маски ребер с учетом отступа 5 вокселей по каждому из простран-
ственных направлений:

x x x y z Rmin max min= ⋅ ( ) ∈{ } −( )0 2 5, : , ,� � ,

x W x x y z Rmax min max= ⋅ ( ) ∈{ } +( )', : , ,� �2 5 .

Аналогично находятся координаты ymin, ymax, zmin, zmax.

Рис. 3. Сегментация ребер с использованием преобразования исходного  
КТ-изображения в разреженное облако точек и модели PointNet++.
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5. Изображение I′ и маски переломов F′ обрезаются в соответствии с полученными коор-
динатами:

I I x y z x x x y y y z z z'' ' , , : , ,= ( ) ≤ ≤ ≤ ≤ ≤ ≤{ }min max min max min max� � � � ,

F F x y z x x x y y y z z z'' ' , , : , ,= ( ) ≤ ≤ ≤ ≤ ≤ ≤{ }min max min max min max� � � � .

2.2. М е т о д    с е г м е н т а ц и и. В силу того, что на первом этапе работы предлагаемого 
алгоритма обнаружения переломов ребер требуется только их локализация, рассматривается 
задача одноклассовой семантической сегментации методами глубокого обучения.

В качестве начальной точки разработки сегментационной модели представлено использо-
вание алгоритмов автоматического определения наиболее подходящей архитектуры для за-
даннного набора данных. В решении задачи сегментации переломов ребер приведены 3D-ре-
ализации моделей SegResNet с  механизмом обучения Deep Supervision [24], U-Net и  Swin 
UNETR v2 [25]. Оптимальные гиперпараметры сети U-Net были подобраны с помощью ме-
тодов фреймворка nnU-Net [14], модель SegResNet показала лучшие результаты на основании 
алгоритма выбора модели методами Auto3DSeg [15].

Конфигурация модели SegResNet: число начальных фильтров (каналов на первом слое) – 16,  
количество блоков энкодера и декодера – (1, 2, 2, 4) и (1, 1, 1) соответственно, глубина ис-
пользуемых карт признаков для механизма Deep Supervision – 3. На каждом блоке энкодера 
пространственное разрешение изображения уменьшается в 2 раза, количество каналов соот-
ветственно увеличивается в 2 раза.

Конфигурация модели SwinUNETR: количество модулей на слоях – (2, 2, 2, 2), число вы-
ходов механизма внимания на каждом слое – (3, 6, 12, 24), размер признакового описания 
скрытого состояния – 24. Применялась вторая версия данной сети.

Конфигурация модели U-Net: количество каналов на слоях энкодера и декодера – (16, 32, 64, 
128, 256, 384), функция активации LeakyReLU с наклоном в области отрицательных значений, 
равным 0.01, размеры сверток – 3 × 3 × 3, шаг ядер свертки на первом слое энкодера – 1 × 1 × 1,  
на последующих – 2 × 2 × 2. Использовалась модификация сети с применением механизма 
Skip Connection [26].

Основываясь на результатах исследований, демонстрирующих прирост качества методов 
сегментации переломов ребер при привлечении дополнительной информации о ребрах [8, 9],  
был предложен вариант обучения моделей с  добавлением второго канала с  информацией 
о вокселях изображения в областях, соответствующих сегментационным маскам ребер. Пусть 
I – исходное КТ-изображение размером W × H × D, R – соответствующая изображению ма-
ска семантической сегментации ребер. Тогда дополнительный канал Ic  может быть представ-
лен в виде трехмерной матрицы размером W × H × D с элементами Ic (x, y, z) следующего вида:

I x y z
I x y z R x y zc , ,

, , , , , ,

.
( ) = ( ) ( ) ≠

−




если

иначе

� 0

1024
                                              (2.1)

В процессе обучения дополнительный канал конкатенировался с исходным изображением 
и использовался в качестве входа в модель.

При обучении сегментационных моделей функциями потерь выступала сумма функции 
потерь Focal Loss (2.7) и функции потерь Dice (2.6). Вычисление функции потерь на допол-
нительных выходах сети SegResNet осуществлялось с предварительным повышением разре-
шения соответствующих карт признаков до размера целевой сегментационной маски пере-
ломов. Компонента i функции потерь, вычисленная для выхода глубины i, нормировалась на 
значение 1/2i. Итоговая функция потерь определялась в виде суммы компонент с различных 
выходов декодера:

L y y L y ytotal true pred
i

d

i i true pred
i

, , .( ) = ( )
=

−
( )∑

0

1
1

2
� �                                                      (2.2)

Здесь y i dpred
i( ) ∈[ ]{ }: , ,1  – выходы модели с последних d слоев декодера.

2.3. А р х и т е к т у р ы   д е т е к т о р о в. Первым этапом работы алгоритма обнаружения 
и классификации переломов является локализация областей, содержащих данную травму. Ре-
зультат работы данного шага в терминах задачи детекции может быть описан в виде набора 
ограничивающих параллелепипедов B (1.1) и степени уверенности алгоритма P в наличии пе-
релома в каждой из предсказанных областей. С учетом нормировки уверенность модели P[i] 
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для предсказания с номером i в нахождении перелома в области изображения IB[i] (1.2) может 
быть интерпретирована как вероятность нахождения патологии в данной области. На этом 
этапе требуется обнаружение как можно большего числа переломов, т. е. высокое значение 
чувствительности алгоритма.

Классическим подходом к построению нейросетевой модели детекции является представ-
ление архитектуры в виде комбинации трех основных составляющих, включающих в себя 
базовую модель (англ. backbone), модуль извлечения и  агрегации признаковых описаний 
с различными пространственными разрешениями (англ. neck) и выходы для предсказания 
координат ограничивающих параллелепипедов и уверенности модели в локализации объекта 
в заданной области (англ. regression and classification heads). Задача базовой модели заключа-
ется в извлечении информативных признаковых описаний различных пространственных раз-
решений из исходного изображения. Модуль извлечения и агрегации преобразует полученные 
выходы нижних и верхних уровней базовой модели путем комбинации карт признаков раз-
личного пространственного разрешения между собой. Классификационный и регрессионный 
выходы на основании объединенных карт признаков формируют финальные предсказания, 
извлекая информацию о классах и координатах объектов на изображении.

В качестве базовой детекционной модели предлагается применять anchor-based [27] де-
тектор, концептуальная схема которого продемонстрирована на рис. 4. Выбор модели, ис-
пользующей предварительно заданный набор ограничивающих параллелепипедов, основан 
на эмпирических выводах и результатах сравнения anchor-based и anchor-free детекционных 
архитектур с точки зрения мер качества полноты и чувствительности [28, 29].

В рамках разработки и тестирования методов детекции были реализованы 3D-модификации 
архитектур RetinaNet [30] и EfficientDet [31] с применением в качестве базовых моделей ResNet 
(residual network) [7], SEResNeXt (squeeze-and-excitation residual network with external transformations) 
[32, 33], HRNet (high-resolution net) [34] и EfficientNet [35] (B1-B5) соответственно. Сверточные 
ядра первого слоя в моделях ResNet, SEResNeXt и HRNet были заменены на свертки размером  
3 × 3 × 3 и шагом 1 × 1 × 1 с целью увеличения пространственного разрешения начальной и последую- 
щих карт признаков в 2 раза. Рассматривались модули агрегации признаков FPN (feature pyramid 
network) [36] и BiFPN (bidirectional feature pyramid network) [31] с применением различного числа 
выходных слоев с базовых моделей, количество которых варьировалось от двух до четырех. Коли-
чество карт признаков, используемых в выходных слоях (модулях регрессии и классификации), 
также варьировалось в диапазоне от трех до пяти. Финальными модулями, преобразующими по-
лученные карты признаков различных пространственных разрешений в логиты классификации 
и регрессии на ограничивающих параллелепипедах, выступали сверточные блоки, состоящие из 
четырех последовательных слоев. Выход с последнего пятого слоя в данных модулях не применя-
ется в силу малой пространственной размерности карт признаков данного слоя, получающихся 
при использовании сегмента КТ-изображения с разрешением W × H × D = 192 × 192 × 192.

Формирование дополнительных карт признаков, используемых в модулях агрегации, осу-
ществлялось с помощью добавления дополнительных блоков к последнему слою базовой мо-
дели. Увеличение количества признаковых описаний различных пространственных разреше-
ний на единицу производилось с применением операции MaxPooling с размером ядра 3 × 3 × 3  
и шагом 2 × 2 × 2 к последнему выходу сети, на два – путем последовательного применения 
двух сверточных модулей с финальной операцией MaxPooling. Архитектурная схема детекци-
онной модели приведена на рис. 5.

Рис. 4. Концептуальная схема модели детекции переломов.
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2.4. И с п о л ь з о в а н и е   д о п о л н и т е л ь н о г о   в ы х о д а   д л я   с е г м е н т а ц и и    
о б л а с т е й   и н т е р е с а. Применение подхода обучения нейросетей на несколько задач 
в некоторых случаях позволяет добиться более высокого качества решения целевой задачи, 
а также получить более устойчивую модель [37] за счет выделения более информативного 
и общего признакового описания исходных данных. Как было отмечено ранее, интуитив-
ным шагом в решении задачи обнаружения переломов ребер является привлечение допол-
нительной информации в виде масок семантической сегментации ребер [9]. Однако подхо-
ды, использующие данную информацию непосредственно на шаге предсказания модели, 
имеют существенный недостаток. Качество итогового предсказания модели будет зависеть 
от качества работы алгоритма сегментации ребер, и, соответственно, ошибки на данном эта-
пе могут приводить к увеличению итоговой ошибки работы системы. Более того, увеличи-
вается суммарное время работы алгоритма. Таким образом, предлагается использовать ин-
формацию о семантических масках ребер только на этапе обучения модели. В исследовании 
рассматривались сегментационные маски ребер, представленные в датасете RibSeg v2 [22].

В качестве дополнительного выхода детекционной модели предлагается применять модуль 
сегментации ребер на изображениях пониженного разрешения. Понижение разрешения осу-
ществляется в 2 раза для соответствия пространственному разрешению первой карты призна-
ков, формирующейся на выходе базовой модели и модуля агрегации. Среди вариантов реа-
лизации дополнительного сегментационного выхода были рассмотрены простые реализации 
декодеров, представляющие из себя объединение карт признаков с различными простран-
ственными разрешениями в финальную сегментационную маску, и U-Net-подобные архи-
тектуры, такие как 3D U-Net, 3D U-Net++ [38] и 3D Attention U-Net [39]. Картами призна-
ков энкодеров данных модулей выступают выходы с модуля извлечения и комбинирования 
признаков детекционной модели, предварительно преобразованные сверточными модулями.

Особое внимание в данном случае будет уделено модификации сети Attention U-Net, схе-
ма которой представлена на рис. 6. Карты признаков каждого слоя декодера получаются пу-
тем конкатенации экстраполированных карт признаков декодера с предыдущего слоя и карт 
признаков энкодера, прошедших через модуль Attention Gate. Механизм пространственного 
внимания позволяет сети сфокусироваться на важных регионах изображения, игнорируя не-
релевантные или шумные участки. С точки зрения подхода к построению архитектуры на ре-
шение нескольких задач использование данного приема позволит модели выучивать важные 
признаки как для задачи детекции переломов ребер, так и для задачи сегментации костных 
структур ребер. Более того, информация о расположении ребер теоретически может заметно 
снизить число ложноположительных предсказаний, локализованных вне ребер, так как у мо-
дели будет информация о структуре костной системы грудной клетки.

Положим, что { }f l
l
n
=1  – карты признаков, получаемые на выходе из модуля извлечения 

признаков детекционной модели, например BiFPN. Здесь n – количество выходов модуля 

Рис. 5. Общая архитектура модели детекции переломов: базовая модель, 
модуль комбинирования карт признаков и модули классификации и регрессии.
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извлечения признаков. Тогда картами признаков энкодера будет являться набор { }el
l
n
=1, в ко-

тором el получается из fl путем последовательного применения модулей свертки, батч-норма-
лизации [40] и функции активации.

Механизм внимания Attention Gate может быть формализован в следующем виде. Пусть 
el – карта признаков энкодера на слое l размером C W H De

l
e
l

e
l

e
l× × × , dl – карта признаков 

на слое декодера l размером C W H Dd
l

d
l

d
l

d
l× × ×  (нумерация в  обратном порядке по мере 

уменьшения пространственного размера карт признаков). Входной сигнал gl (gating signal) 
для модуля внимания формируется на основании карты признаков декодера dl путем после-
довательного выполнения операций интерполяции, свертки, батч-нормализации и функции 
активации. Размер gl равен C W H Dg

l
e
l

e
l

e
l× × ×  и совпадает с пространственным разрешени-

ем соответствующей карты признаков энкодера. С помощью свертки 1 × 1 × 1 полученные 
карты признаков выравниваются по числу каналов. Данные карты признаков gl

1  размера 
C W H Dinner

l
e
l

e
l

e
l× × ×  и  el

1  размера C W H Dinner
l

e
l

e
l

e
l× × ×  складываются с последующим приме-

нением функции активации ReLU. С помощью последовательного использования операций 
свертки, батч-нормализации и функции активации-сигмоиды формируется карта внимания 
размерами 1 × × ×W H De

l
e
l

e
l , которая поэлементно умножается на карту признаков энкодера el. 

Формирование карты признаков d l–1 следующего слоя декодера осуществляется путем кон-
катенации полученного результата с картой признаков gl:
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        (2.3)

Здесь σ1 – функция активации ReLU, σ2 – функция активации сигмоида, “*” – операция 
поэлементного произведения.

2.5. Ф у н к ц и и   п о т е р ь. Функция потерь общей модели включает в себя три компо-
ненты в соответствии с тремя различными выходами сети: классификационным, регрессион-
ным (на ограничивающих параллелепипедах) и сегментационным. В силу того, что на данном 
шаге алгоритма не производится классификация переломов ребер по клиническим категори-
ям, классификационный выход модели предсказывает вероятности только для одного класса, 
которые могут интерпретироваться как уверенность модели в локализации перелома в рамках 

Рис. 6. Архитектура модифицированного варианта 
сети Attention U-Net с механизмом пространственного 

внимания Attention Gate.
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соответствующего ограничивающего параллелепипеда. На основании этого в классификаци-
онном выходе сети была применена функция потерь бинарной перекрестной энтропии:

BCELoss y y
N

y y ytrue pred
i

N

true pred true,( ) = − + −( ) −
=
∑1

1 1
1

� log log yypred( )



 .                 (2.4)

В качестве функции потерь, использующейся в регрессионном выходе сети, был применен 
сглаженный L1 лосс [41] с коэффициентом β, равным 1/9:

	 SmoothL Loss x y
x y x y
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n n

n n n n

n n
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ββ иначе.
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



                        (2.5)

Агрегирование данной функции потерь производилось путем усреднения значений по всем 
предсказаниям и по шести измерениям каждого предсказания.

Целевой функцией оптимизации для сегментационного выхода модели выступала равновес-
ная сумма функций потерь Dice Loss [42] и Focal Loss [30] с коэффициентом γ, равным двум:

	 DiceLoss y y
y y

y ytrue pred
true pred

true pred
,

( * )( ) = −
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Здесь “*” в числителе – операция поэлементного произведения. Суммы рассчитываются по 
всем вокселям предсказанной и действительной масок сегментации объектов. Коэффициент 
сглаживания ε = 1 используется для обеспечения численной стабильности вычисления функ-
ции потерь Dice:
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Коэффициент ατ обеспечивает возможность балансирования классов.
В случае решения задачи многоклассовой сегментации производится усреднение функций 

потерь по каждому из классов.
2.6. К л а с с и ф и к а ц и я   о б н а р у ж е н н ы х   о б ъ е к т о в. В некоторых случаях для 

решения задач многоклассовой сегментации или детекции структур, образований или пато-
логий, имеющих схожую природу и разделенных пространственно друг от друга (например, 
переломы ребер, узелки в легких или патологии лимфатических узлов), используются двухста-
дийные алгоритмы [43, 44]. Результатом работы первого этапа являются локализованные це-
левые структуры, не дифференцированные по различным классам. На втором этапе выполня-
ется решение задачи классификации предсказаний, полученных на первом шаге. В ряде задач 
такой подход позволяет повысить полноту обнаружения патологий и в то же время увеличить 
меры качества классификации.

В статье предлагается использовать модель классификации итоговых предсказаний алго-
ритма детекции переломов ребер не только для разделения переломов на требуемые клини-
ческие категории, но и с целью уменьшения количества ложноположительных предсказаний 
первого шага алгоритма. Выходом такого классификатора для одного предсказания детектора 
будет являться вектор � � � � �p p p p p=  1 2 3 4, , ,  с компонентами, характеризующими вероятности сле-
дующих классов: отсутствие перелома, перелом со смещением, перелом без смещения, кон-
солидированный перелом.

Результат работы модели классификации и примеры различных классов переломов с уче-
том возможного варианта ложноположительного предсказания детектора приведены на рис. 7. 
Изображение 1 – консолидированный перелом, 2, 3 – переломы без смещения, 5, 6 – перело-
мы со смещением, 4 – ложноположительное предсказание детекционной модели.

2.7. М е р ы   к а ч е с т в а   д е т е к ц и и   и   к л а с с и ф и к а ц и и. На различных этапах 
работы алгоритма присутствуют разные требования к мерам качества предсказаний. Так, на 
первом шаге локализации патологий необходимо обнаружение как можно большего числа 
переломов, т. е. максимизация полноты AR (average recall). В силу того, что решается задача 
детекции, данная мера качества рассчитывается для определенного уровня значения IoU пе-
ресечения предсказаний с реальными локализациями объектов. При вычислении AR исполь-
зуются N (гиперпараметр алгоритма) предсказаний с наибольшей уверенностью модели:

Recall IoU t
TP

TP FN
@ .=( ) =

+
�                                                         (2.8)

Здесь TP – количество верно предсказанных локализаций переломов, для которых IoU с огра-
ничивающим параллелепипедом какого-либо реального перелома больше порога t, FN – коли-



ОБНАРУЖЕНИЕ И КЛАССИФИКАЦИЯ ОБЪЕКТОВ      

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 6 2024

123 

чество переломов, не обнаруженных на уровне порога t по величине IoU. Также рассматривалась 
мера качества mAR, являющаяся усреднением AR для различных порогов пересечения по IoU:
	 mAR Recall IoU t

t t tn

= =( )
∈ …[ ]
∑
1, ,

@ .� �                                             (2.9)

Список порогов t, по которым производится усреднение меры AR, выбирается исходя из 
требований к желаемой чувствительности локализации переломов. В данной статье целевыми 
мерами качества работы первого этапа алгоритма были выбраны мера AR для N = 100 предска-
заний с наибольшей уверенностью алгоритма на уровне значения IoU = 0.3 и мера mAR с по-
рогами от 0.1 до 0.5 и шагом 0.05. Выбор данных значений порогов для расчета мер полноты 
обусловлен результатами визуального анализа предсказаний, для которых значение меры IoU 
с каким-либо ограничивающим параллелепипедом действительной локализации перелома 
находилось на уровне от 0.1 до 0.5.

На втором этапе работы алгоритма требуются высокие значения мер точности (precision) 
и полноты (recall) классификации переломов и объектов, не являющихся переломами, т. е. 
максимизация макроусредненного по всем классам (отсутствие перелома, перелом со смеще-
нием, перелом без смещения, консолидированный перелом) значений данных мер качества:
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Также рассматривалась макроусредненная мера качества F1:
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Для определения качества детекции применялись меры IoU и Dice, вычисленные для N де-
текционных предположений с наибольшей уверенностью модели:

	 IoU y y
y y

y y
true pred

true pred

true pred
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Основной мерой качества работы алгоритмов обнаружения патологий, в том числе пере-
ломов ребер, принято считать меру FROC (англ. free-response receiver operating characteristic), 
оценивающую свободный ответ при различных порогах принятия решения. В качестве по-
рогов рассматриваются значения 0.5, 1, 2, 4 и 8 среднего количества ложноположительных 

Рис. 7. Примеры различных классов переломов с учетом возможного 
варианта ложноположительного предсказания детектора.
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предсказаний переломов алгоритма на одном КТ-изображении, в качестве ответа – значение 
чувствительности AR (2.8) при N = 100 и IoU = 0.3.

2.8. Ф о р м и р о в а н и е   и т о г о в о г о   п р е д с к а з а н и я. Выбор гиперпараметров 
алгоритма обнаружения и классификации переломов для формирования финального пред-
сказания системы включает в себя определение следующих величин: Tconf  – степень уверен-
ности алгоритма (confidence), по которой происходит отсечение предсказанных локализаций 
переломов; Nmap – максимальное количество детекций, приходящихся на одну карту призна-
ков на каждом уровне с различными пространственными разрешениями; Tnms – уровень по-
рога по IoU для работы алгоритма non-maximum suppression; Nimg – максимальное количество 
детекций на одно изображение; Tnon–frac – значение уровня вероятности не принадлежности 
ни одному из клинических категорий переломов, предсказанный классификатором.

При заданных гиперпараметрах формирование финального предсказания системы может 
быть представлено в виде следующего алгоритма:

1. Для каждого уровня карт признаков, на которых осуществляется предсказание перело-
мов ребер, удаляются предсказания со значением уверенности модели меньше Tconf.

2. Для каждого уровня карт признаков сохраняются только Nmap предсказаний с наиболь-
шим значением уверенности модели детекции.

3. Для каждого изображения применяется алгоритм non-maximum suppression со значением 
порога по IoU = Tnms.

4. Для каждого изображения оставляются только Nimg предсказаний детектора.
5. Оставляются только те предсказания, для которых уровень вероятности принадлежности 

к классу, описывающему отсутствие перелома, меньше Tnon–frac.
Данные параметры определяются с помощью методов поиска по сетке, генетических алго-

ритмов или Байесовской оптимизации. Для ускорения поиска формируются предварительные 
наборы предсказаний, полученные при эмпирически определенных краевых значениях поро-
гов, которые обеспечивают формирование наиболее широкого набора предсказаний. В каче-
стве целевой оптимизируемой меры качества предлагается рассматривать меру FROC.

3. Набор данных. Основным открытым набором данных, используемым исследователями при 
разработке и тестировании методов решения задачи обнаружения и классификации переломов 
ребер, является датасет RibFrac [20]. Датасет содержит 660 снимков компьютерной томографии 
области грудной клетки пациентов с различными классами переломов ребер. Каждый КТ-скан 
RibFrac сопоставлен соответствующим воксельным маскам сегментации переломов ребер, ан-
нотированным одним из четырех клинических категорий переломов: перелом-пряжка, перелом 
с диастазом, перелом без диастаза или сегментарный перелом. Отдельной категорией в данном 
наборе исследований выделяются сопутствующие находки и переломы, класс которых не может 
быть обозначен из-за неопределенности или трудностей диагностики.

Предварительно набор данных разделен авторами на три части – обучающая, валидаци-
онная и  тестовая. Обучающая часть содержит 420 КТ-изображений, валидационная – 80 
и тестовая – 120. Маски переломов ребер для тестовой части датасета являются закрытыми 
и используются для оценки качества алгоритмов, предложенных участниками соревнования 
RibFrac Challange [21].

Исходные КТ-изображения из набора данных RibFrac были получены с применением раз-
личных КТ-сканеров и настроек их работы и имеют различные значения пространственного 
разрешения и количества аксиальных срезов. Медианный спейсинг (пространственное рас-
стояние между вокселями в миллиметрах) КТ-изображений в датасете равен, пиксельное раз-
решение одного среза исследования – 512 на 512. Медианное количество аксиальных срезов 
на одно исследование равно 357.

В работе была использована частичная выборка изображений из набора данных RibFrac, 
содержащая 250 исследований, повторно проанализированных и исправленных специали-
стами-медиками. В процессе валидации были скорректированы и дополнены существующие 
маски сегментации переломов ребер и добавлена информация о величине диастаза в милли-
метрах для переломов со смещением. Более того, было произведено изменение меток клас-
сификации переломов на три следующих класса: переломы с диастазом, переломы без диа-
стаза и консолидированные переломы. Корректирование исходной разметки набора данных 
RibFrac обусловлено присутствием неточностей изначальной диагностики патологий ребер 
и требованиями, предъявляемыми к разрабатываемой системе.

В клинической практике выделяют три основных типа переломов: переломы с диастазом, 
переломы без диастаза и консолидированные переломы. Переломы без диастаза – это пе-
реломы, которые не вызывают смещения костей. Их бывает сложно идентифицировать при 
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рентгенографии. Часто переломы ребер без смещения можно обнаружить только при после-
дующих осмотрах, когда уже проявились признаки заживления. Переломы с диастазом – это 
переломы со значительным отклонением в положении двух частей поврежденного ребра. При 
возникновении таких переломов могут возникнуть травмы окружающих тканей и структур. 
Величиной диастаза для данной категории переломов называется расстояние максимального 
расхождения частей ребра или его фрагментов. Консолидированные переломы – это полное 
или частичное восстановление целостности кости после ее перелома с формированием сна-
чала первичной, а затем и вторичной костной мозоли.

Дальнейший анализ методов и подходов будет осуществляться с использованием описан-
ной выше выборки данных. На рис. 8. приведены гистограммы распределения количества КТ- 
изображений для отобранной части исследований из набора данных RibFrac по коронарному 
и сагиттальному пространственным разрешениям, количеству аксиальных срезов и общему ко-
личеству переломов на одно исследование. Статистики рассчитаны до преобразований.

Для решения задач предварительной обработки данных и исследования моделей локализа-
ции, задействующих информацию о структуре ребер, рассматривался датасет RibSeg v2 [22], 
содержащей воксельные сегментационные маски ребер, разделенные на 24 класса, и инфор-
мацию о центральных линиях каждого ребра. Разметка в наборе данных RibSeg v2 формиро-
валась на основании исследований датасета RibFrac. Таким образом, каждое КТ-изображение 
набора данных RibFrac имеет соответствующую разметку ребер из датасета RibSeg v2.

3.1. Ф о р м и р о в а н и е   о т р и ц а т е л ь н ы х   п р и м е р о в. Важным аспектом при 
обучении модели снижения числа ложноположительных предсказаний является генерация 
отрицательных примеров, представляющих из себя сегменты изображения, не локализующие 
целевую патологию. Существуют различные способы сэмплирования таких примеров. Неко-
торые из методов описаны, например, в работе [45].

В качестве основной составляющей числа отрицательных примеров уместно рассматривать 
ложноположительные предсказания алгоритма детекции переломов ребер на первом шаге. 
Предсказание разумно считать ложным, если значение IoU (intersection over union) предска-
зания меньше 0.01 для любого истинного перелома на изображении. В силу того, что лож-
ноположительные предсказания модели детекции почти всегда выделяют область высокой 
плотности, локализующую какую-либо часть костной ткани (чаще всего ребер), естественным 
будет включение в число отрицательных примеров случайно выбранных областей ребер, не 
локализующих никакой из переломов на изображении (IoU < 0.01). Размеры выбираемых из 
изображения областей могут быть определены случайным образом или через набор базовых 
параллелепипедов, использующихся в процессе обучения детекционной модели. Дополни-
тельно добавляется некоторая доля от общего числа отрицательных примеров случайно вы-
бранных из изображения произвольных регионов, не содержащих переломы.

Формирование отрицательных примеров может выполняться в  динамическом режиме 
в процессе обучения для каждого изображения обучающей выборки. В совокупности с ис-
пользованием пространственных аугментаций такой метод повышает разнообразие и вариа-
тивность набора отрицательных регионов. Динамическое формирование примеров позволяет 
учитывать ложноположительные предсказания, возникновение которых обусловлено про-
странственными аугментациями или изменениями интенсивности, в силу того, что модель 
детекции применяется к каждому преобразованному изображению заново. Однако данный 

Рис. 7. Гистограммы распределения количества КТ-изображений для 
отобранной части исследований из набора данных RibFrac.
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подход имеет существенный недостаток, заключающийся в низкой скорости обучения модели 
в силу необходимости обрабатывать все КТ-исследование целиком на каждой итерации обу-
чения с применением предсказания модели локализации переломов.

В качестве альтернативного варианта генерации отрицательных сэмплов предлагается ис-
пользовать предварительное выделение определенного набора областей изображения. Для 
обеспечения вариативности формируемого набора примеров рекомендуется вырезать области 
с учетом добавления дополнительного случайного отступа к границам исходных параллеле-
пипедов. Данный шаг позволит модели классификации учитывать больше информации об 
окружающих анатомических структурах относительно применения фиксированного размера 
ограничивающих параллелепипедов, что в совокупности с использованием пространственных 
аугментаций увеличивает обобщающую способность модели. При таком подходе предсказа-
ние модели детекции переломов осуществляется для каждого изображения только один раз, 
что в теории может снижать вариативность ложноположительных предсказаний, вызываемых 
трансформациями исходного КТ-исследования.

Пусть I(i) – изображение обучающего набора с номером i, являющееся трехмерной матри-
цей размерами W H Di i i( ) ( ) ( )× × , Rribs

i( )  – сегментационная маска ребер, сопоставленная дан-
ному изображению, Banchors  – базовый набор ограничивающих параллелепипедов, исполь-
зуемый при обучении модели детекции, Breal

i( )  – набор ограничивающих параллелепипедов, 
описывающий действительные локализации переломов ребер на изображении I(i), Bpred

i( )  – 
предсказанный детектором набор ограничивающих параллелепипедов переломов ребер для 
изображения I(i), отсортированный в порядке убывания уверенности модели.

Коэффициенты α α α α α= [ ] + =1 2 1 2 1, ,  определяются как доли количества формируемых от-
рицательных примеров, являющихся ложноположительными предсказаниями детектора и слу-
чайными элементами в областях ребер, и число N – как общее количество генерируемых отрица-
тельных примеров на одно изображение. Тогда формирование набора отрицательных примеров 
для обучения модели классификации может быть описано в виде следующего алгоритма:

для изображений I(i) в обучающей выборке

B B B j Npred j
i← + ≤  { }( )

, : ±1 , k = 0;

до тех пор, пока k N N Bpred
i< [ ] −
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
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, , , , : , ,( ) = ( ) ( ) ∈{ }( )( )RS ,
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если max IoU B B B Bj j real
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, : .( ) ∈{ }( ) <( ) 0 01, тогда B B B k k← + ← +, � � 1.

Здесь [x] – операция целочисленнного округления x вниз, [x]  – операция целочисленного 
округления x вверх,  x y z x y z x y z Rc c c ribs

i
, , , , : , ,( ) = ( ) ( ) ∈{ }( )( )RS  – операция взятия случайного элемента множества,  Size – операция 

вычисления размера параллелепипеда по трем осям, результатом которой является трехмер-
ный вектор, b b b Size Bx y z anchors x y z, , ,, ,( ) = ( )( ) + [ ]{ }RS U � � 0 10[a, b] – трехмерный вектор, каждый элемент которого взят из равномер-
ного распределения на заданном отрезке [a, b].

Помимо положительных примеров из числа размеченных специалистами масок переломов, 
ограниченных параллелепипедами описанным в разд. 1.2 методом, могут быть использованы 
предсказания детектора, для которых существует разметка с IoU < 0.5. Дополнительное расши-
рение ограничивающих параллелепипедов может быть выполнено по аналогии с методом, при-
меняемым для обработки генерируемых отрицательных регионов. Соотношение общего числа 
отрицательных и положительных сэмплов является гиперпараметром модели классификации.

4. Экспериментальная часть. Основной акцент в данном исследовании сделан на разработке 
двухстадийной системы детектирования переломов ребер с помощью КТ-изображений ор-
ганов грудной клетки (ОГК). В процессе исследования рассматривались следующие задачи:

1. Построение архитектуры обнаружения переломов ребер в терминах решения задачи се-
мантической сегментации.
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2. Разработка и определение оптимальной конфигурации модели детекции, использующей 
заданный набор ограничивающих параллелепипедов (anchor-based):

– подбор оптимальных нейросетевых архитектур, примеряемых в качестве базовой модели 
и модуля комбинирования признаковых описаний различных пространственных разрешений;

– добавление и конфигурирование дополнительного выхода детекционной модели, ис-
пользующегося для решения задачи семантической сегментации ребер на этапе обучения;

– определение оптимальной конфигурации гиперпараметров выбора ограничивающих па-
раллелепипедов на этапах обучения и предсказания.

3. Построение модели классификации переломов и уменьшения числа ложноположитель-
ных предсказаний, полученных на первом шаге. Выбор оптимальной стратегии формирова-
ния отрицательных примеров, применяемых при обучении модели классификации.

4. Подбор оптимальных гиперпараметров всей системы локализации и классификации пе-
реломов ребер.

5. Сравнение результатов полученной системы с существующими методами решения за-
дачи сегментации переломов ребер с точки зрения мер качества чувствительности и FROC.

4.1. П р е д о б р а б о т к а   и   а у г м е н т а ц и я    д а н н ы х. Для обучения моделей 
использовался выделенный и  провалидированный врачами-рентгенологами набор из 250 
КТ-исследований датасета RibFrac, предварительно обработанный алгоритмом, который опи-
сан в разд. 2.1. В качестве обучающего набора были случайным образом отобраны 80% изобра-
жений. Оставшиеся 20% КТ-сканов применялись для валидации. Пространственное разреше-
ние исследований данного набора – (1.25, 0.75, 0.75), медианный размер одного изображения 
в осях, Oz, Oy, Ox равен (392, 277, 284). Предварительно каждое изображение нормировалось 
в диапазоне от –240 до 1040 HU, что являлось 0.025 и 0.975 квантилями распределения плот-
ности в денситометрических показателях, рассчитанной в областях переломов по всем изо-
бражениям. При обучении моделей рассматривались случайные сегменты изображения раз-
мерами 192 × 192 × 192 вокселей, содержащие сегментационные маски переломов ребер.

В качестве аугментаций исходного набора данных использовались случайные изменения 
интенсивности методами сдвига и  шкалирования, добавление случайного Гауссова шума 
и Гауссова сглаживания. Пространственными аугментациями выступали случайные аффин-
ные преобразования с максимальным углом поворота по каждой оси π/15 и максимальным 
относительным растяжением (сжатием) 0.15, а также случайное приближение или отдаление 
с амплитудой в диапазоне [0.9, 1.1]. Для изображений валидационного набора применялось 
только нормирование плотности по шкале Хаунсфилда.

Для обучающей части набора данных нормировка КТ-изображения по диапазону  
HU ∈ [–240, 1040] осуществлялась после применения аугментаций интенсивности. Выделение 
сегмента размерами 192 × 192 × 192 вокселей происходило после использования простран-
ственных трансформаций. Аналогичные пространственные преобразования применялись для 
сегментационных масок ребер и переломов ребер. При помощи трансформаций данного вида 
на КТ-изображениях использовался метод трилинейной интерполяции, на сегментационных 
масках – интерполяция методом ближайших соседей. Вычисление ограничивающих паралле-
лепипедов для преобразованных в процессе применения аугментаций сегментационных ма-
сок производилось с помощью алгоритма, который представлен в разд. 1.2.

4.2. Р е ш е н и е   з а д а ч и   с е г м е н т а ц и и. Изначальный подход к решению задачи 
локализации переломов ребер был реализован с помощью методов семантической сегмента-
ции. В качестве базовых архитектур рассматривались модели, описанные в разд. 2.2.

Обучение моделей производилось в течение 300 эпох на видеоускорителе Nvidia RTX 3090 
с 24 Гб оперативной памяти. Оптимизация выполнялась с помощью градиентного спуска ме-
тодом Adam с параметрами β1 = 0.9, β2 = 0.999 и коэффициентом регуляризации весов 3e – 5.  
Скорость обучения 1e – 3. Обучение производилось с использованием смешанной точности 
вычислений с плавающей точкой, исходные данные преобразовывались в формат половинной 
точности. Размер пакета (батча) – 1. Формирование результата на этапе предсказания мо-
дели осуществлялось с применением метода скользящего окна, соответствующего размерам 
регионов изображения, используемых в процессе обучения – вокселей 192 × 192 × 192. Доля 
линейного перекрытия между различными окнами – 0.625.

Полученные предсказания моделей сегментации обрабатывались в два шага: на первом 
этапе предсказания корректировались с  помощью морфологических операций замыкания 
и размыкания, на втором этапе удалялись сегментационные маски объемом менее 50 вокселей 
с целью исключения шумов. В процессе эксперимента были рассмотрены варианты обучения 
моделей с использованием дополнительного канала, содержащего информацию о вокселях 
КТ-изображения, которые соответствуют сегментационной маске ребер.
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Вычисление мер качества FROC и Recall производилось на уровне значения IoU, равном 
0.2. Результаты соответствующих экспериментов приведены в табл. 1.

Полученные меры качества детекции были расценены как неудовлетворительные в рамках 
решения данной задачи. В связи с этим было принято решение изменить подход к формализа-
ции задачи и переформулировать ее в терминах решения задачи детекции. Подробно переход 
описан в разд. 1.2.

4.3. О б у ч е н и е   д е т е к ц и о н н о й   м о д е л и. Начальным шагом разработки системы 
обнаружения переломов ребер являлось экспериментальное определение оптимальной архи-
тектуры модели детекции, использующей заданный набор ограничивающих параллелепипедов.

Сопоставление реальных примеров переломов с предсказаниями модели в процессе обу-
чения детектора производилось с помощью алгоритма адаптивного выбора обучающей вы-
борки ATSS (англ. adaptive training sample selection) [29], который представляет собой метод 
автоматического определения положительных и отрицательных выборок в соответствии со 
статистическими характеристиками ограничивающих пареллелепипедов. Рассматривался ва-
риант алгоритма ATSS с дополнительным требованием на нахождение центра предсказанного 
параллелепипеда внутри ограничивающего параллелепипеда реального перелома для отнесе-
ния объекта к числу положительных примеров.

Определение набора положительных и отрицательных примеров, по которым в дальней-
шем будет производиться расчет классификационной и регрессионной функций потерь, про-
изводился с помощью стратегии жесткой отрицательной выборки [46]. Размер пакета (батча) 
на изображение был выбран равным 64, минимальное количество отрицательных примеров, 
выбираемых случайным образом из 160 отрицательных примеров с наибольшим значением 
уверенности модели, равен 8, соотношение количества положительных и отрицательных при-
меров –0.3.

Вычисление оптимального набора ограничивающих параллелепипедов было выполнено 
с помощью алгоритма, предложенного авторами nnDetection [47]. Данный алгоритм максими-
зирует значение IoU между набором заданных параллелепипедов и реальными локализация- 
ми переломов ребер по всем изображениям обучающей выборки данных. Базовым набором 
выбрали список из шести параллелепипедов.

Обучение моделей производилось в течение 250 эпох на видеоускорителе A100 с 80 Гб опе-
ративной памяти. Оптимизация выполнялась с помощью стохастического градиентного спу-
ска SGD (англ. stochastic gradient descent) совместно с использованием накопления момента 
с коэффициентом при экспоненциальном скользящем среднем β = 0.9 и коэффициентом ре-
гуляризации весов 3 5e − . Скорость обучения 1 3e − . Все расчеты производились с применени-
ем смешанной точности вычислений с плавающей точкой. Исходные данные предварительно 
преобразовывались в формат половинной точности fp16 . Размер пакета (батча) варьировался 
от 1 до 2 в зависимости от модели.

Формирование результата на этапе предсказания модели осуществлялось с применением 
метода скользящего окна, соответствующего размерам регионов изображения, используемых 
в процессе обучения – 192 192 192× ×  вокселей. Доля линейного перекрытия между различ-
ными окнами составляла 0.5.

4.4. О п р е д е л е н и е   о п т и м а л ь н о й   а р х и т е к т у р ы. На первом этапе выбора де-
текционной модели были реализованы 3D-модификации архитектур RetinaNet и EfficientDet 
с  использованием в  качестве базовых моделей ResNet, SEResNeXt, High-Resolution Net 

  Канал для ребер  Модель  FROC  Recall  Dice 

 Не использовался
 

 SegResNet  0.647  0.771  0.567 
 Swin UNETR  0.445  0.56  0.319 

 nnU-Net  0.601  0.691  0.54 

 Использовался
 

 SegResNet 0.683 0.795    0.594

 Swin UNETR  0.489  0.61  0.413 
 nnU-Net  0.624  0.725  0.553 

Таблица 1. Результаты сравнения сегментационных моделей с учетом и без учета использования 
дополнительного канала с масками сегментации ребер
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и EfficientDet (B1-B5) с базовой сетью EfficientNet (B1-B5) соответственно. Сверточные ядра 
первого слоя в моделях ResNet, SEResNeXt и EfficientNet были заменены на ядра размером 
3 3 3× ×  и шагом 1 1 1× ×  с целью повышения пространственного разрешения карт призна-
ков. Эмпирически было определено, что данная замена оказывает значимое влияние на каче-
ство работы детекционной модели. В качестве модулей агрегации признаков различных про-
странственных разрешений исследовались FPN и BiFPN с привлечением различного числа 
выходных слоев с базовых моделей, количество которых варьировалось от 2 до 4. Количество 
карт признаков, применяемых в выходных модулях классификации и регрессии на ограничи-
вающих параллелепипедах, варьировалось в диапазоне от 3 до 5. В исследовании рассматри-
вались лишь некоторые наиболее осмысленные и относительно различные варианты комби-
наций модулей и используемых слоев из возможных. Основной мерой качества, по которой 
происходил выбор оптимальной архитектуры, являлось значение полноты (Recall) на уровне 
IoU = 0 3.  – сокращенно Recall IoU@ .=( )0 3 .

Изначально были зафиксированы значения количества выходных слоев из базовых мо-
делей и из модулей извлечения признаков на величинах 3 и 4 соответственно, анализиро-
вались только архитектуры. Данный выбор обусловлен анализом размера карт признаков на 
этих слоях. Для входного изображения размером 192 192 192× ×  вокселей размеры карт при-
знаков с выходных слоев 1–4 модулей извлечения признаков равны 96 96 96× × , 48 48 48× × ,  
24 24 24× ×  и 12 12 12× ×  соответственно. Рассмотрение карт признаков с более низким про-
странственным разрешением или использование более глубоких слоев базовых моделей на 
данном этапе исследования не было целесообразно.

Сравнение в данном эксперименте выполнялось с помощью детекционных мер FROC и 
Recall IoU@ .=( )0 3 , а также мер качества локализации IoU и Dice. Результаты эксперимента 
приведены в табл. 2.

Исследование влияния количества выходных слоев из базовых моделей и количества слоев модуля 
комбинирования карт признаков различных пространственных разрешений было проведено для сети 
ResNet с модулем FPN, SEResNeXt с модулем BiFPN и архитектуры EfficientDet-B3 (EfficientNet-B3 
с BiFPN). Для блока FPN различие между числом входных и выходных признаков равно 1, так как 
в качестве дополнительного используется только 1-й слой, получаемый применением операции 
MaxPooling к последнему выходу базовой модели. Нумерация слоев производилась от выхода с наи-
большим пространственным разрешением карт признаков. Сравнение в данном эксперименте прово-
дилось только с точки зрения меры Recall IoU@ .=( )0 3 . Результаты приведены в табл. 3.

4.5. И с п о л ь з о в а н и е   д о п о л н и т е л ь н о г о   в ы х о д а   с е г м е н т а ц и и. 
Второй этап исследования архитектуры детекционной модели включал определение эффекта 
применения дополнительного выхода модели для решения задачи семантической сегментации 
ребер. Сравнение производилось для архитектур ResNet‑50 с модулем FPN и SEResNeXt‑50 
с модулем BiFPN. Количества выходных слоев базовой модели и модулей извлечения при-
знаков были выбраны равными 3 и 4 соответственно на основании результатов предыдуще-
го эксперимента. В случае использования модуля BiFPN для сегментационного выхода сети 
применялись выходы со всех 5 его слоев. Результаты эксперимента приведены в табл. 4.

Модуль агрегации Базовая модель FROC  Recall  Dice  IoU 

FPN
 

ResNet-50 0.815   0.887  0.687  0.523 
SEResNeXt-50 0.801  0.903  0.683  0.519 

HRNet-50  0.785  0.892  0.678  0.513 

BiFPN
 

ResNet-50  0.798  0.8933  0.694  0.531 
SEResNeXt-50  0.809 0.906  0.703  0.542  

EfficienNet-B1  0.765  0.887  0.664  0.497 
EfficienNet-B3  0.771  0.9024  0.667  0.501 
EfficienNet-B5  0.733  0.854  0.657  0.489 

Таблица 2. Результаты сравнения базовых архитектур и модулей комбинирования карт признаков 
различного пространственного разрешения
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Можно видеть, что при добавлении дополнительного выхода для сегментации ребер на-
блюдается существенное повышение меры полноты детекции переломов. Наилучший резуль-
тат получается при применении модификации сети Attention U-Net.

4.6. Ф и н а л ь н а я   а р х и т е к т у р а   д е т е к т о р а. В качестве финальной детекцион-
ной модели предлагается использовать anchor-based детектор, основанный на 3D-реализации 
сети SEResNeXt‑50 с модулем извлечения признаков BiFPN и дополнительным сегментаци-
онным выходом, представляющим из себя модификацию сети Attention U-Net. В качестве 
выхода из модели SEResNeXt выбираются карты признаков со слоев 1, 2 и 3 с количеством 
каналов в слоях 256, 512 и 1024 соответственно. Дополнительные карты признаков для вхо-
да в модуль BiFPN получаются путем добавления сверточных блоков на выходе последнего 
слоя базовой модели. В модулях классификации и регрессии на ограничивающих паралле-
лепипедах на вход подаются карты признаков с 1-го по 4-й слой модуля BiFPN. Модулями, 
преобразующими карты признаков в логиты классификации и регрессии на ограничивающих 
параллелепипедах, выступают сверточные блоки, состоящие из 4 слоев. В модуле сегментации 
ребер используются выходы со всех 5 слоев BiFPN.

4.7. Г е н е р а ц и я   п о л о ж и т е л ь н ы х   и   о т р и ц а т е л ь н ы х   п р и м е р о в.  
В  рамках разработки и  обучения модели классификации предсказаний переломов ребер, 
полученных на предыдущем шаге работы алгоритма, рассматривались различные стратегии 
формирования отрицательных и положительных примеров (разд. 3.1). В эксперименте рассма-
тривались два варианта генерации отрицательных обучающих примеров. В обоих вариантах 
в качестве положительных примеров были выбраны реальные локализации переломов ребер 
и корректные предсказания детекционной модели с  IoU > 0 5. . Варианты генерации отрица-
тельных примеров, применяемых в процессе обучения классификатора, могут быть описаны 
следующим образом:

1) формирование отрицательных примеров только из числа ложноположительных предска-
заний модели, т. е. таких, для которых значение IoU с любым истинным параллелепипедом, 
ограничивающим перелом ребра, составляет менее 0 05. ;

2) формирование отрицательных примеров в  виде комбинации ложноположительных 
предсказаний детекционной модели, случайных областей ребер, не локализующих никакой 

  Слои базовой модели, слои модуля комбинирования 
 Архитектура  (2, 3)  (2, 4)  (2, 5)  (3, 4)  (3, 5) 

 ResNet + FPN 0.8902  —  —  0.8872  — 
 SEResNeXt + BiFPN  0.8971  0.8993  0.8734 0.9063   0.8913 
 EfficientNet + BiFPN  0.8811  —  — 0.9024   0.8689 

Таблица 3. Результаты сравнения различного числа выходных слоев из базовых моделей и количества 
признаковых описаний из модулей FPN и BiFPN по мере Recall IoU@ .=( )0 3  

  Дополнительный выход  Архитектура  FROC  Recall  Dice  IoU 

 Не используется 
 ResNet  0.815  0.887  0.687  0.523 

 SEResNeXt  0.809  0.906  0.703  0.542 

 Upsampling 
 ResNet  0.829  0.934  0.697  0.535 

 SEResNeXt  0.816  0.921  0.711  0.551 

 U-Net 
 ResNet  0.83  0.939  0.698  0.536 

 SEResNeXt  0.818  0.927  0.709  0.549 

 Attention U-Net 
 ResNet 0.839   0.944  0.701  0.54 

 SEResNeXt  0.837   0.948 0.714    0.556

Таблица 4. Результаты сравнения архитектур различных конфигураций дополнительного выхода 
сегментации ребер
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из переломов на изображении (для которых значение IoU с любой истинной локализацией 
равно 0), а также некоторой доли случайно выбранных областей изображений.

В случае, когда для генерации примеров не использовались предсказания детекционной 
модели, размер выбираемой из изображения области определялся с помощью алгоритма из 
разд. 3.1. с применением набора шести предварительно заданных параллелепипедов, приме-
няемых при обучении модели локализации переломов.

4.8. О б у ч е н и е   м о д е л и   к л а с с и ф и к а ц и и. В качестве классификационной мо-
дели использовалась сверточная сеть ResNet‑18. Выбор данной архитектуры обусловлен ма-
лыми размерами ограничивающих параллелепипедов, по которым производилось выделение 
регионов изображения. Рассматривались две стратегии обучения модели-классификатора.

1. Динамическая – обучение с помощью пакетов (батчей), формируемых на основании по-
ложительных и отрицательных примеров, генерируемых по изображению в моменте обучения 
на каждой итерации.

2. Статическая – обучение с использованием случайного сэмплирования из заранее сфор-
мированного набора положительных и отрицательных примеров по всем изображениям обу- 
чающей выборки. На каждое изображение формировалось до 100 отрицательных примеров 
при применении варианта генерации с помощью случайных областей ребер.

Положительные и отрицательные примеры объединялись в 1 батч размером 16, каждый 
элемент данного набора дополнялся до максимального размера изображения в батче (с учетом 
делимости на 16) симметричным нулевым отступом. Соотношение положительных и отрица-
тельных примеров равно 0.3, минимальное число отрицательных примеров в одном батче – 8. 
В случае, когда количество изначально полученных отрицательных или положительных при-
меров было недостаточно для удовлетворения поставленных условий, они дополнялись ауг-
ментированными вариантами изображений соответствующего класса.

В качестве функции потерь использовалась перекрестная энтропия с весами классов, об-
ратно пропорциональных мощности классов в обучающих примерах. Меры качества, пред-
ставленные в табл. 5, найдены путем макроусреднения соответствующих мер по всем классам.

Применение ложноположительных предсказаний детектора при формировании отрица-
тельных примеров на каждой итерации обучения (динамический метод) не осуществлялось 
из-за необходимости использования детекционной модели на каждом шаге, что приводило 
к значительному увеличению времени обучения модели классификации.

По результатам эксперимента наиболее оптимальной стратегией формирования отрицатель-
ных примеров для обучения классификатора является применение ложноположительных пред-
сказаний детектора в совокупности со случайными регионами с центром в точках ребер. Меры 
качества классификации для различных клинических категорий переломов с использованием 
стратегии смешанной генерации отрицательных примеров во время обучения приведены в табл. 6.

4.9. П о д б о р   г и п е р п а р а м е т р о в   с и с т е м ы. Выбор гиперпараметров мо-
делей детекции и классификации предполагает определение оптимальных значений порогов 
(разд. 2.8). В целях ускорения проведения вычислительных экспериментов предварительно 
производилась генерация предсказаний для граничных значений Tconf = 0 05. , Nmap = 10000 10 000,  
Nimg = 1000 при различных значениях порога для алгоритма non maximum suppression 
Tnms ∈[ ]0 3 0 4 0 5 0 6. , . , . , . . Дальнейший подбор оптимальных гиперпараметров выполнялся ме-

  Метод генерации  Метод генерации  Precision  Recall  F1 
 Регионы ребер  Динамический  0.744  0.785  0.763 

 Статический  0.732  0.761  0.748 
 Предсказания детектора  Динамический  —  —  — 

 Статический  0.753  0.797  0.773 
 Предсказания + ребра  Динамический  —  —  — 

 Статический   0.756 0.801    0.778

Таблица 5. Результаты сравнения методов обучения классификационной модели для различных 
вариантов формирования положительных и отрицательных примеров



МАТВЕЕВ, ЮРЧЕНКО

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 6 2024

132

тодом поиска по сетке с целевой функцией оптимизации FROC. Значение порога Tnon frac−  
определялось эвристически. В ходе эксперимента были выбраны следующие значения соот-
ветствующих параметров:

	 T N T N Tconf map nms img non frac= = = = =−0 83 1000 0 5 100 0. , , . , ,� � � � � � � � ..4 .	

4.10. С р а в н е н и е   р е з у л ь т а т о в. Большинство существующих подходов ориенти-
рованны на решение задачи сегментации переломов ребер, поэтому сравнение данных ме-
тодов с предлагаемым подходом с точки зрения мер IoU или Dice  не информативно. Общее 
качество системы обнаружения переломов наилучшим образом описывается мерами качества 
FROC, максимальной чувствительностью при заданном минимально допустимом значении 
IoU и средним количеством ложноположительных предсказаний на изображение. Пороги, на 
основании которых производится усреднение меры FROC, были выбраны равными 0.5, 1, 2, 
4 и 8 в соответствии со значениями данных порогов, предлагаемых участникам соревнования 
RibFrac Challange. Порог по значению IoU был выбран на уровне 0.3. Для сравнения авторами 
[9] предлагается использовать порог IoU = 0 2. . Более высокое значение порога по IoU при ре-
шении задачи детекции относительно задачи сегментации обусловлено различиями в объемах 
перекрытия прямоугольных и произвольных криволинейных сегментационных областей.

Важно отметить, что прямое сравнение методов в данном случае не будет корректным, так 
как обучение и тестирование производились для различных частей набора данных RibFrac. 
Более того, разметка данных при разработке FracNet++ [9] и предлагаемого метода дополни-
тельно корректировалась медиками. Наиболее показательным являлось бы сравнение методов 
на закрытой части датасета RibFrac, однако соревнование на данный момент времени закрыто 
для участия.

Результаты сравнения предлагаемого метода с алгоритмами сегментации переломов ре-
бер FracNet++ [9] и SA-FracNet [12] с точки зрения детекционных мер качества приведены 
в табл. 7.

Заключение. Предложен и реализован двухстадийный метод решения задачи сегментации 
переломов ребер, в котором обнаружение и классификация разделены по различным стади-
ям. На первом этапе производится детектирование локализаций переломов ребер с помощью 
anchor-based модели, основанной на 3D-модификации нейросети SEResNeXt с модулем ком-
бинирования признаков различных пространственных разрешений BiFPN и дополнительным 
выходом в виде 3D Attention U-Net, используемым для предсказания семантических масок 

Клиническая категория  Precision  Recall  F1 
 С диастазом  0.905  0.849  0.876 
 Без диастаза  0.643  0.67  0.656 

 Консолидированный  0.552  0.671  0.606 
 Не перелом  0.986  0.981  0.983 

Таблица 6. Меры качества классификации для различных клинических категорий переломов и 
ложноположительных предсказаний

  Архитектура  Detection FROC  Max Sensitivity  Average FP 
 Предлагаемый метод (1 шаг) 0.809  0.948  24.3 

 Предлагаемый метод (2 шага) 0.837  0.935   4.7

 FracNet++ 0.83  0.898  17.73
 SA-FracNet  —  0.926  — 

Таблица 7. Результаты сравнения предложенного метода с методами сегментации переломов 
FracNet++ [8] и SA-FracNet [12] (сравнение было выполнено на различных частях набора данных 
RibFrac с учетом дополнительного корректирования разметки и не может быть рассмотрено как 
прямое сравнение методов)



ОБНАРУЖЕНИЕ И КЛАССИФИКАЦИЯ ОБЪЕКТОВ      

ИЗВЕСТИЯ РАН. ТЕОРИЯ И СИСТЕМЫ УПРАВЛЕНИЯ № 6 2024

133 

ребер на этапе обучения модели. Результатом работы первого шага алгоритма являются пред-
варительные предсказания переломов, локализованные параллелепипедами в  трехмерном 
пространстве КТ-изображения. На втором этапе предсказанные локализации переломов 
классифицируются с целью определения клинической категории перелома ребра и умень-
шения числа ложноположительных предсказаний детектора. Более того, предлагается метод 
формирования отрицательных примеров для обучения модели классификации, обеспечиваю- 
щий оптимальную скорость работы и повышающий точность обнаружения ложноположи-
тельных предсказаний детекционной модели.

Экспериментально демонстрируется, что разработанная система обеспечивает высокое ка-
чество обнаружения переломов ребер на отобранной и дополнительно скорректированной ча-
сти набора данных RibFrac с максимальным значением чувствительности обнаружения 0.935 
при среднем количестве ложположительных предсказаний на одно изображение, равном 4.7.
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