Особенности теплофизических свойств сегнетокерамики PbFe0.5Ta0.5O3 с нанополярной структурой
- Авторлар: Каллаев С.Н.1, Бакмаев А.Г.1, Омаров З.М.1, Борманис К.2
-
Мекемелер:
- Дагестанский федеральный исследовательский центр Российской академии наук
- University of Latvia
- Шығарылым: Том 60, № 9-10 (2024)
- Беттер: 1158-1165
- Бөлім: Articles
- URL: https://journals.rcsi.science/0002-337X/article/view/291661
- DOI: https://doi.org/10.31857/S0002337X24090102
- EDN: https://elibrary.ru/LLJLXO
- ID: 291661
Дәйексөз келтіру
Аннотация
Исследованы теплофизические свойства релаксорного мультиферроика PbFe0.5Ta0.5O3 в интервале температур 150–800 К. Обнаружены аномалии теплоемкости, термодиффузии и теплопроводности в области размытого сегнетоэлектрического перехода при TС ≈ 275 К, температуры Бернса ТB ≈ 690 К и промежуточной температуры Т* ≈ 380 К. Установлено, что аномальное поведение теплоемкости в области температур 200–700 К обусловлено трехуровневыми состояниями (аномалия Шоттки). Рассмотрены доминирующие механизмы теплопереноса фононов мультиферроика с нанополярной структурой. Отмечено, что аномальное поведение теплофизических свойств в области температур ТB > T > TС обусловлено ростом и изменениями, происходящими в системе реориентируемых нанополярных областей. Показано, что исследования теплофизических свойств позволяют определить все характерные для сегнеторелаксоров температуры, связанные с возникновением и температурной эволюцией нанополярной структуры. Результаты исследований обсуждаются совместно со структурными данными.
Негізгі сөздер
Толық мәтін

Авторлар туралы
С. Каллаев
Дагестанский федеральный исследовательский центр Российской академии наук
Хат алмасуға жауапты Автор.
Email: kallaev-s@rambler.ru
Институт физики им. Х. И. Амирханова
Ресей, ул. М. Ярагского, 94, Махачкала, 367005А. Бакмаев
Дагестанский федеральный исследовательский центр Российской академии наук
Email: kallaev-s@rambler.ru
Институт физики им. Х. И. Амирханова
Ресей, ул. М. Ярагского, 94, Махачкала, 367005З. Омаров
Дагестанский федеральный исследовательский центр Российской академии наук
Email: kallaev-s@rambler.ru
Институт физики им. Х. И. Амирханова
Ресей, ул. М. Ярагского, 94, Махачкала, 367005К. Борманис
University of Latvia
Email: kallaev-s@rambler.ru
Institute of Solid State Physics
Латвия, Kengaraga Street, 8, Riga, LV-1063Әдебиет тізімі
- Bokov A.A., Ye Z.-G. Recent Progress in Relaxor Ferroelectrics with Perovskite Structure // J. Mater. Sci. 2006. V. 41. № 1. P. 31–52. https://doi.org/10.1007/s10853-005-5915-7
- Nomura S., Takabayashi H., Nakagawa T. Dielectric and Magnetic Properties of Pb(Fe1/2Ta1/2)O3 // Jpn. J. Appl. Phys. 1968. V. 7. № 6. P. 600. https://doi.org/
- Martinez R., Palai R., Huhtinen H., Liu J., Scott J.F., Katiyar R.S. Nanoscale Ordering and Multiferroic Behavior in Pb(Fe1/2Ta1/2)O3 // Phys. Rev. B. 2010. V. 82. P. 134104. https://doi.org/10.1103/PhysRevB.82.134104
- Lampis N., Sciau Ph., Lehmann A.G. Rietveld Refinements of the Paraelectric and Ferroelectric Structures of PbFe0.5Ta0.5O3 // J. Phys. Condens. Matter. 2000. V. 12. № 11. P. 2367–2378. https://doi.org/10.1088/0953-8984/12/11/303
- Lehmann A.G., Kubel F., Schmid H. The Disordered Structure of the Complex Perovskite Pb(Fe0.5Ta0.5)O3 // J. Phys. Condens. Matter. 1997. V. 9. № 39. P. 8201-8212. https://doi.org/10.1088/0953-8984/9/39/006
- Lehmann A.G., Sciau Ph. Ferroelastic Symmetry Changes in the Perovskite PbFeY0.5Ta0.5O3 // J. Phys. Condens. Matter. 1999. V. 11. № 5. P. 1235. https://doi.org/10.1088/0953-8984/11/5/011
- Raevski I.P., Molokeev M.S., Misyul S.V., Eremin E.V., Lazhevich A.V., Kubrin S.P., Sarichev D.A., Titov V.V., Chen H., Chou C.C., Raevskaya S.I., Malitskaya M.A. Studies of Ferroelectric and Magnetic Phase Transitions in Multiferroic PbFe0.5Ta0.5O3 // Ferroelectrics. 2015. V. 475. P. 52–60. https://doi.org/10.1080/00150193.2015.995009
- Shvorneva L.I., Venevtsev N. Y. Perovskites with Ferroelectric–Magnetic PropertieS // Sov. Phys. JETP. 1966. V. 22. № 4. P. 722–724.
- Kubrin S.P., Raevskaya S.I., Kuropatkina S.A., Sarychev D.A., Raevski I.P. Dielectric and Mossbauer Studies of B-Cation Order-Disorder Effect on the Properties of Pb(Fe1/2Ta1/2)O3 Relaxor Ferroelectric // Ferroelectrics. 2006. V. 340. № 1. P. 155–159. https://doi.org/10.1080/00150190802408945
- Bonny W., Bonin M., Sciau Ph., Schenk K.J., Chapuis G. Phase Transitions in Disordered Lead Iron Niobate – X-Ray and Synchrotron Radiation Diffraction Experiments // Solid State Commun. 1997. V. 102. P. 347–352. https://doi.org/10.1016/S0038-1098(97)00022-7
- Cross L.E. Relaxor Ferroelectrics // Ferroelectrics. 1987. V. 76. P. 241–267. https://doi.org/10.1007/978-3-540-68683-5_5
- Bokov A.A., Shpak L.A., Rayevsky I.P. Diffuse Phase Transition in Pb(Fe0.5Nb0.5)O3-Based Solid Solutions // J. Phys. Chem. Solids. 1993. V. 54. P. 495–499. https://doi.org/10.1016/0022-3697(93)90333-M
- Zhu W.Z., Kholkin A., Mantas P.Q., Baptista J.L., Preparation and Characterisation of Pb(Fe1/2Ta1/2)O3 Relaxor Ferroelectric // J. Eur. Ceram. Soc. 2000. V. 20. P. 2029–2034. https://doi.org/10.1134/1.1523518
- Raevski I.P., Eremkin V.V., Smotrakov V.G., Malitskaya M.A., Bogatina S.A., Shilkina L.A. Growth and Study of PbFe1/2Ta1/2O3 Single Crystals // Crystallogr. Rep. 2002. V. 47. P. 1076–1081. https://doi.org/10.1134/1.1523518
- Bormanis K., Burkhanov A.I., Waingolts A.I., Kalvane A. Electrical Properties of Lead Ferrotantalate Ceramics // Integr. Ferroelectr. 2009. V. 108. P. 134–139. https://doi.org/10.1080/00150193.2019.1569980
- Burns G., Dacol F.H. Glassy Polarization Behavior in Ferroelectric Compounds Pb(Mg1/3Nb2/3)O3 and Pb(Zn1/3Nb2/3)O3 // Solid State Commun. 1983. V. 48. № 10. P. 853–856. https://doi.org/10.1016/0038-1098(83)90132-1
- Dul’kin E., Roth M., Janolin P.-E., Dkhil B. Acoustic Emission Study of Phase Transitions and Polar Nanoregions in Relaxor-based Systems: Application to the PbZn1/3Nb2/3O3 Family of Single Crystals // Phys. Rev. B. 2006. V. 73. № 1. P. 012102. https://doi.org/10.1103/PhysRevB.73.012102
- Mihailova B., Maier B., Paulmann C., Malcherek T., Ihringer J., Gospodinov M., Stosch R., Güttler B., Bismayer U. High-temperature Structural Transformations in the Relaxor Ferroelectrics PbSc0.5Ta0.5O3 and Pb0.78Ba0.22Sc0.5Ta0.5O3 // Phys. Rev. B. 2008. V. 77. P. 174106. https://doi.org/10.1103/PHYSREVB.77.174106
- Dkhil B., Gemeiner P., Al-Barakaty A., Bellaiche L., Dul’kin E., Mojaev E., Roth M. Intermediate Temperature Scale T in Lead-based Relaxor Systems // Phys. Rev. B. 2009. V. 80. P. 064103. https://doi.org/10.1103/PhysRevB.80.064103
- Roth M., Mojaev E., Dul’kin E., Gemeiner P., Dkhil B. Phase Transition at a Nanometer Scale Detected by Acoustic Emission within the Cubic Phase Pb(Zn1/3Nb2/3)O3-xPbTiO3 Relaxor Ferroelectrics // Phys. Rev. Lett. 2007. V. 98. № 26. P. 265701. https://doi.org/10.1103/PhysRevLett.98.265701
- Toulouse J. The Three Characteristic Temperatures of Relaxor Dynamics and Their Meaning // Ferroelectrics. 2008. V. 369. № 13. P. 203–213. https://doi.org/10.1080/08838150802378160
- Gorev M.V., Flerov I.N., Sciau Ph., Bondarev V.S., Geddo-Lehmann A. Heat Capacity and Thermal Expansion Studies of Relaxors // Ferroelectrics. 2004. V. 307. P. 127–136. https://doi.org/10.1080/00150190490492240
- Dul’kin E.A., Raevski I.P., Emel’yanov S.M. Acoustic Emission and Thermal Expansion of PbFe0.5Nb0.5O3 Crystals near Phase Transitions // Phys. Solid State. 1997. V. 39. P.363–364. https://doi.org/10.1080/00150190490492240
- Ronguette J., Hainеs J., Bornand V. Transition to a Cubic Phase with Symmetry-breaking Disorder in PbZr0.52Ti0.48O3 at High Pressure // Phys. Rev. B. 2002. V. 65. P. 214102-1–214102-4. https://doi.org/10.1103/PhysRevB.65.214102
- Kallaev S.N., Omarov Z.M., Bakmaev A.G., Mitarov R.G., Reznichenko L.A., Bormanis K. Thermal Properties of Multiferroic Bi1−xEuxFeO3 (х = 0–0.40) Ceramics // J. Alloys Compd. 2017. V. 695. P. 3044–3047. https://doi.org/10.1016/j.jallcom.2016.11.347
- Жузе В.П. Физические cвойства халькогенидов редкоземельных элементов. Л.: Наука, 1973. 304 c.
- Mitarov R.G., Tikhonov V.V., Vasilev L.N., Golubkov A.V., Smirnov I.A. Schottky Effect in the Pr3Te4–Pr2Te3 System // Phys. Status Solidi A. 1975. V. 30. № 2. P. 457–467. https://doi.org/10.1002/pssa.2210300204
- Nuzhnyy D., Petzelt J., Bovtun V., Kamba S., Hlinka J. Soft Mode Driven Local Ferroelectric Transition in Lead-based Relaxors // Appl. Phys. Lett. 2019. V. 114. № 18. P. 182901. https://doi.org/10.1063/1.5090468
- Smirnova E., Sotnikov A., Zaitseva N., Schmidt H., Weihnacht M. Acoustic Properties of Multiferroic PbFe1/2Ta1/2O3 // Phys. Lett. A. 2010. V. 374. № 41. P. 4256–4259. https://doi.org/10.1016/j.physleta.2010.08.039
- Isupov V.A. New Approach to Phase Transition in Relaxor Ferroelectrics // Phys. Status Solidi B. 1999. V. 213. P. 211–218. https://doi.org/10.1002/(SICI)1521-3951(199905)213:1<211::AID-PSSB211>3.0.CO;2-L
- Kolesova R., Kupriyanov M. Structural Study of PbFe0.5Nb0.5O3 Crystal in the Paraelectric Phase // Phase Transitions. 1993. V. 45. № 4. P. 271–276. https://doi.org/10.1080/01411599308213210
- Lampis N., Sciau Ph., Lehmann A.G. Rietveld Refinements of the Paraelectric and Ferroelectric Structures of PbFe0.5Nb0.5O3 // J. Phys.: Condens. Matter. 1999. V. 11. № 17. P. 3489–3501. https://doi.org/10.1088/0953-8984/12/11/303
Қосымша файлдар
