УДК 666.7; 666.3.017

МЕХАНИЧЕСКИЕ СВОЙСТВА КЕРАМИКИ НА ОСНОВЕ НИТРИДА КРЕМНИЯ СО СПЕКАЮЩЕЙ ДОБАВКОЙ Yb₂O₃

© 2024 г. Н. К. Георгиу^{1, *}, Е. С. Жукова¹, А. И. Жмурин¹, А. И. Ганичев¹, М. Г. Лисаченко¹, М. Ю. Русин¹

1АО "ОНПП "Технология" им. А.Г. Ромашина", Киевское ш., 15, Обнинск, Калужская обл., 249030 Россия

*e-mail: info@technologiya.ru

Поступила в редакцию 25.06.2024 г. После доработки 05.09.2024 г. Принята к публикации 05.09.2024 г.

В работе исследованы фазовый состав и механические свойства керамики Si_3N_4 в зависимости от содержания Yb_2O_3 . Показано, что для всех образцов основным компонентом межзеренной фазы было соединение $Yb_4Si_2O_7N_2$, а сопутствующими фазами — силикаты иттербия, количество которых возрастало с увеличением содержания Yb_2O_3 в исходных порошках. Выявлена тенденция к снижению прочности на изгиб с увеличением содержания спекающей добавки как при комнатной температуре, так и при 1600° С. Кривые перемещения-нагрузки при 1600° С показали пластический характер деформации и текучесть материала, которая росла с увеличением количества Yb_2O_3 , что обусловлено неполной кристаллизацией межзеренной фазы.

Ключевые слова: Si_3N_4 , оксид иттербия, спеченный нитрид кремния, высокотемпературная прочность на изгиб

DOI: 10.31857/S0002337X24080122, EDN: LMSXRG

ВВЕДЕНИЕ

Керамические материалы на основе нитрида кремния имеют высокие прочность, жаростойкость. тверлость. химическую стойкость, обладают сравнительно низкими значениями плотности и ТКЛР, что делает Si₃N₄ перспективным материалом для использования во многих отраслях промышленности [1–4]. Особенно ценны стойкость нитрида кремния к термоудару и способность длительно выдерживать температуры 1400-1500°С, что обусловливает применение Si₃N₄ в качестве компонентов горячих секций усовершенствованных газовых турбин с температурой газа в турбине 1500°C и выше [5]. Более высокая по сравнению с металлами рабочая температура керамики снизит потребление охлаждающего воздуха для горячих секций, а также позволит газовой турбине работать с большей эффективностью при пониженных выбросах газов NO_x и CO [6, 7].

Нитрид кремния — соединение с прочной ковалентной связью, в связи с чем получение плотной керамики на его основе спеканием чистых порошков Si_3N_4 затруднено. Обычно для этой цели используют спекающие добавки оксидов металлов, чаще всего иттрия и алюминия, которые в процессе спекания реагируют с находящимся на поверхности частиц Si_3N_4 оксидом кремния и образуют жидкую межзеренную стеклофазу, облегчающую сближение частиц нитрида кремния и способствующую уплотнению материала.

Механизм жидкофазного спекания подробно описан в работах [8—11] и чаще всего представляется в виде последовательности из 3 стадий:

- 1) перегруппировка частиц,
- 2) растворение-осаждение,
- 3) стадия роста зерна.

Получение плотного нитрида кремния жидкофазным спеканием требует высоких температур, близких к температуре диссоциации $\mathrm{Si_3N_4}$ (~1880°C), что может приводить к потере массы вследствие разложения $\mathrm{Si_3N_4}$. Поэтому керамику на основе $\mathrm{Si_3N_4}$ обычно получают спеканием под давлением газа в вакуумно-компрессионных печах. Например, в работе [12] описано получение $\mathrm{Si_3N_4}$ -керамики с комнатной прочностью 1000 МПа спеканием под давлением газа 10 МПа.

Повышения высокотемпературной прочности Si₃N₄-керамики можно достичь применением в качестве спекающей добавки тугоплавких оксидов редкоземельных металлов. В ряду лантаноидов по мере уменьшения ионного радиуса от 0.114 нм для La³⁺ до 0.085 нм для Lu³⁺ прочность получаемой керамики возрастает [13]. Добавка оксида лютеция дает лучшую среди остальных лантаноидов высокотемпературную прочность [5], но из-за редкости данного металла его стоимость на порядок превышает стоимость ближайших соседей. Соответственно, такая керамика будет стоить заметно дороже аналогов, хотя и существует коммерчески доступный $Si_3N_4 - SN 281/282$ (Kyocera Corp., Kyoto, Japan), получаемый спеканием порошков Si₃N₄ с добавками 8 мас.% Lu₂O₃ и 2 мас.% SiO₂ [14, 15].

Иттербий в ряду лантаноидов расположен непосредственно перед лютецием, имеет близкий ионный радиус 0.086 нм, в диапазоне температур $1600-1650^{\circ}$ С взаимодействует с находящимся на поверхности зерен нитрида кремния SiO_2 , образуя тугоплавкие силикаты [16]. Температура

плавления силиката иттербия Yb2Si2O7 составляет 1850°С [17]. По данным исследователей [18], высокий уровень свойств керамики с добавкой оксида иттербия достигается за счет формирования кристаллической межзеренной фазы оксинитрида кремния-иттербия $Yb_4Si_2O_7N_2$ с температурой плавления 1870°С. Прочность полученного материала составляла 480 МПа при 1500°С. В работе [19] показано, что с увеличением содержания Ур₂О₃ в исходных порошках прочность керамики при комнатной температуре не изменяется. При 1400°С наблюдается плавный рост прочности до 870 МПа при добавлении 16 мас. У Ур₂О₃ в то время как трещиностойкость показывает максимальные значения при 8 мас.% Yb₂O₃ ($K_{1c} = 7.5 \text{ M}\Pi \text{a m}^{1/2}$).

Целью данной работы является исследование влияния добавки Yb_2O_3 в количестве 7.5—20 мас.% на прочность спеченного нитрида кремния. Исследованы фазовый состав и микроструктура материала, получены экспериментальные данные по прочности на изгиб при комнатной температуре и 1600° C.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Характеристика исходных порошков. Использовали порошки нитрида кремния (ИСМАН, г. Черноголовка), полученные методом самораспространяющегося высокотемпературного синтеза. В качестве спекающей добавки брали порошки оксида иттербия, полученные разложением при 650°С нитрата иттербия ("х.ч."). Основные характеристики исходного сырья приведены в табл. 1.

Изготовление материала. Для исследования влияния содержания спекающей добавки Yb_2O_3 на свойства получаемой керамики

Таблица 1. Основные характеристики исходных порошков

Материал	Поставщик/изготовитель, ТУ	Фазовый состав	$S_{ m yg}$, м $^2/\Gamma$	Примеси, мас.%
Si_3N_4 равноосный	ИСМАН, ТУ 24.45.30-365-04860509-2021	α-Si ₃ N ₄ >96%	5.3	$\omega(Al_2O_3), 0.17$ $\omega(Fe_2O_3), 0.01$
Yb(NO ₃) ₃ ·6H ₂ O "х.ч."	ООО "Неваторг"	_	_	_
Yb ₂ O ₃	АО "ОНПП "Технология"	Yb ₂ O ₃ кубический	30.6	_

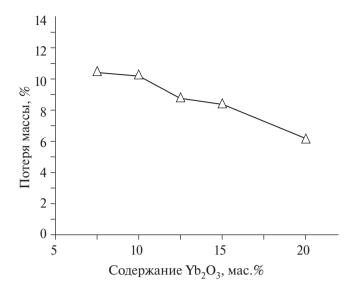
брали порошки Si_3N_4 с добавкой 7.5, 10, 12.5, 15 и 20 мас.% Yb_2O_3 . Составы порошковых смесей и их теоретические плотности представлены в табл. 2. Фаза SiO_2 неотъемлемо присутствует на поверхности частиц Si_3N_4 . Количество SiO_2 для каждого состава рассчитано на основе данных производителя о содержании кислорода (1.5 мас.%) в порошках Si_3N_4 . Плотности компонентов, используемых при расчетах теоретических плотностей, составляют 3.21 г/см³ для Si_3N_4 , 2.65 г/см³ для SiO_2 и 9.17 г/см³ для Yb_2O_3 [20].

Таблица 2. Расчеты состава и теоретической плотности исходных порошковых смесей

Смесь	Co	ρ _т , г/см ³		
	Si ₃ N ₄	SiO ₂	Yb ₂ O ₃	
1	89.91	2.59	7.5	3.35
2	87.48	2.52	10	3.41
3	85.05	2.45	12.5	3.47
4	82.62	2.38	15	3.54
5	77.75	2.25	20	3.67

Шихта загружалась в лабораторную планетарную мельницу Pulverisette-5 с шарами и футеровкой помольных стаканов из нитрида кремния и измельчалась в среде этанола в течение 24 ч с частотой вращения 300 об/мин. По завершении помола шихту извлекали и сушили в течение 4 ч при температуре 110°C до остаточной влажности менее 0.1%. Сухие порошки загружали в помольные стаканы, добавляли 0.5 мас.% ПАВ на основе полиакрилата аммония (Dolapix CE 64) и перемешивали на частоте вращения 200 об/мин в течение 15 мин до образования однородных по фактуре порошков, не содержащих комков. Далее порошки смешивали с 3 мас. % связующего (водного раствора поливинилпироллидона марки К-90) и прессовали балки размером $10 \times 10 \times 70$ мм на одноосном прессе при давлении 100 МПа, а затем на изостатическом прессе при 200 МПа. Полученные образцы высушивались при 110°C 3 ч для удаления остаточной влаги, после чего загружались в графитовый тигель, смазанный по внутренней поверхности нитридом бора и заполненный засыпкой из смеси порошков нитрида кремния и нитрида бора в объемном соотношении 50/50.

Тигель с заготовками помещали в индукционную вакуумно-компрессионную печь, где проводили спекание следующим образом: нагрев до 900°С за 1 ч в вакууме, напуск азота до давления 0.1 МПа, нагрев со скоростью 10°С/мин до температуры 1800°С, подъем давления до 2 МПа, выдержка в течение 5 ч, нагрев со скоростью 10°С/мин до температуры 1900°С, выдержка в течение 5 ч, инерционное охлаждение.


Методы исследования. Кажущаяся плотность ρ образцов определялась методом гидростатического взвешивания с использованием дистиллированной воды при 20°C. Относительную плотность рассчитывали из отношения $\rho/\rho_{\rm T}$.

Фазовый состав керамики определяли согласно ASTM D3720-90R05. Фотографии микроструктуры образцов были получены с помощью сканирующего электронного микроскопа в соответствии с ASTM C1723-16. Элементный анализ образцов проводили на системе рентгеноспектрального микроанализа согласно ASTM E1621-22.

Для измерения предела прочности при статическом трехточечном изгибе $\sigma_{\rm изг}$ при разных температурах образцы нарезали на балки $3\times4\times50$ мм. Испытания при комнатной температуре проводили согласно ГОСТ 24409-80 со скоростью нагружения 1.5 мм/мин и расстоянием между опорами 40 мм. Испытания при 1600° С на воздухе проводили по следующей схеме: образец помещали в нагретую печь, оставляли на 10 мин для выравнивания температуры, а затем нагружали до разрушения.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В процессе спекания для всех составов были достигнуты относительные плотности 98.5-99.5% от теоретической. Образцы с добавкой 20% Yb₂O₃ имели наибольшую относительную плотность 99.6%, что закономерно, поскольку данный состав в про-

Рис. 1. Изменение массы образцов Si_3N_4 .

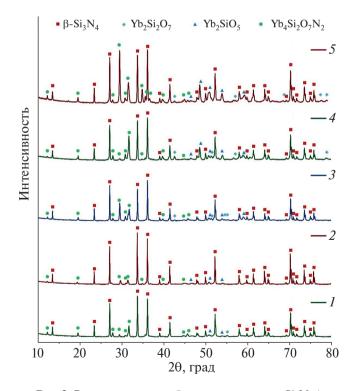
цессе жидкофазного спекания дает большее количество межзеренной фазы, необходимой для сближения под действием капиллярных сил зерен $\mathrm{Si}_3\mathrm{N}_4$, обеспечивая таким образом наибольшее уплотнение материала.

На рис. 1 показано влияние спекающей добавки Yb_2O_3 на потерю массы образцов в процессе спекания.

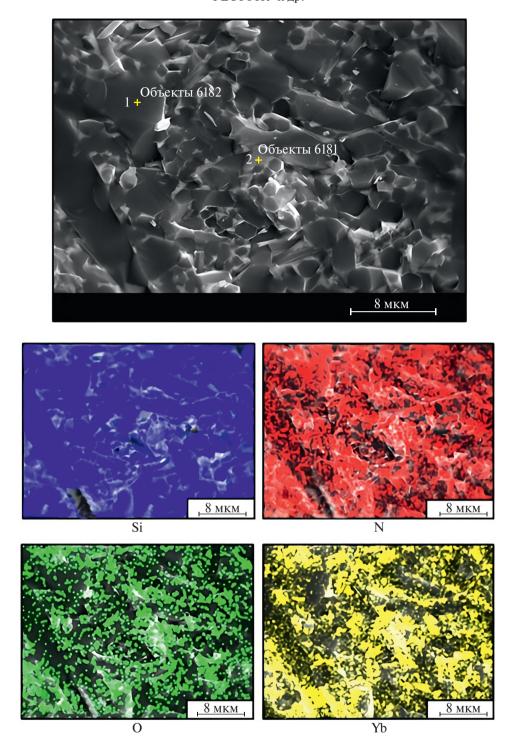
С ростом содержания Yb_2O_3 наблюдается снижение потери массы с ~10 до 6%. Из них около 3.5% приходится на органическую связку и ПАВ. Соответственно, потеря массы керамической частью составляет 6.5—2.5%. Такую закономерность можно объяснить следующим образом: в процессе спекания в диапазоне температур 1800—1900°C потеря массы главным образом обусловлена испарением SiO_2 , а также реакцией [21]

$$3SiO_{2}(TB.) + Si_{3}N_{4}(TB.) \rightarrow$$

$$\rightarrow 6SiO(\Gamma.) + 2N_{2}(\Gamma.). \tag{1}$$


С увеличением количества спекающей добавки возрастает доля SiO_2 , участвующего в образовании соответствующих силикатов, и, соответственно, меньшее количество оксида кремния расходуется на реакцию (1). В результате наблюдается тенденция, показанная на рис. 1.

По данным РФА (рис. 2), образцы 1-5 состоят в основном из высокотемпературной фазы β -Si₃N₄, что свидетельствует о полноте перехода α -Si₃N₄ в β -Si₃N₄ в процессе спекания.


Межзеренная фаза главным образом состоит из кристаллического оксинитрида кремния-иттербия, интенсивность пиков которого на рентгенограммах растет с увеличением содержания Yb_2O_3 в исходных порошках. Образование данного соединения можно представить как взаимодействие компонентов по реакции [18]

$$2Yb_2O_3 + 1/2Si_3N_4 + 1/2SiO_2 \rightarrow$$

 $\rightarrow Yb_4Si_2O_7N_2.$ (2)

Состав межзеренной фазы также подтверждается результатами элементного анализа образцов. На рис. 3 представлена картограмма скола образца 3 в точках 1 (зерно Si_3N_4) и 2 (межзеренная фаза). Можно наблюдать повышенную концентрацию Yb и O в межзеренной фазе (светлые области

Рис. 2. Рентгенограммы образцов спеченного Si_3N_4 (номера рентгенограмм соответствуют номерам образцов в табл. 2).

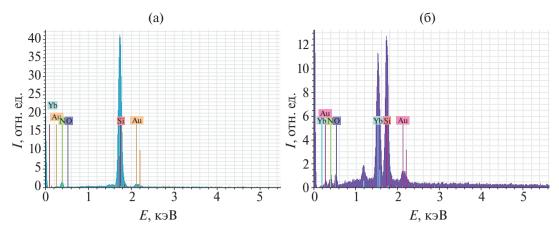


Рис. 3. Микрофотография образца *3* и карты распределения элементов.

на микрофотографии), тогда как Si и N распределены равномерно по всему объему материала.

Точечные спектры образца *3* также приведены на рис. 4, численные данные сведены

в табл. 3. Концентрация кислорода в зерне составляет менее 1% и около 20% — в межзеренной фазе. Содержание иттербия в зерне около 4% и порядка 13% — в межзеренной фазе.

Рис. 4. Рентгеновские спектры образца 3 в точках 1 (а) и 2 (б): 1 – зерно Si_3N_4 , 2 – межзеренная фаза.

Таблица 3. Элементный состав зерна Si_3N_4 и межзеренной фазы в образце *3*

	·			
Элемент	Концентрация, ат.%			
	межзеренная фаза	зерно Si ₃ N ₄		
Si	32.46	49.43		
N	33.42	48.93		
0	19.38	0.83		
Yb	13.56	4.41		
Au	1.17	0.81		

Авторы [18] отмечают, что уплотнение нитрида кремния в процессе спекания обусловлено формированием жидкой фазы в системе Yb_2O_3 — SiO_2 , которое становится заметным, начиная с температуры 1650° С. При дальнейшем повышении температуры со временем растет степень уплотнения материала до образования плотного нитрида кремния с межзеренной фазой $Yb_4Si_2O_7N_2$ (реакция (2)). В то же время известно, что при формировании жидкой фазы идет образование силикатов иттербия за счет взаимодействия спекающей добавки с пленкой оксида кремния согласно реакциям

$$Yb_2O_3 + SiO_2 \rightarrow Yb_2SiO_5, \tag{3}$$

$$Yb_2O_3 + 2SiO_2 \rightarrow Yb_2Si_2O_7.$$
 (4)

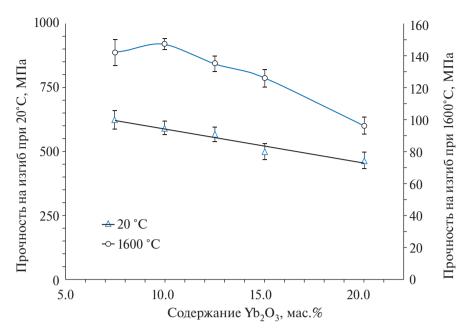
Оба силиката обнаруживаются на рентгенограммах (рис. 2), при этом интенсивность

соответствующих пиков растет с увеличением содержания спекающей добавки.

При повышении температуры до $1800-1900^{\circ}$ С силикаты иттербия взаимодействуют с нитридом кремния, присоединяя азот из молекулы Si_3N_4 . Возможные реакции представлены ниже:

$$4Yb_{2}SiO_{5} + Si_{3}N_{4} \rightarrow$$

$$\rightarrow 2Yb_{4}Si_{2}O_{7}N_{2} + 3SiO_{2}, \qquad (5)$$

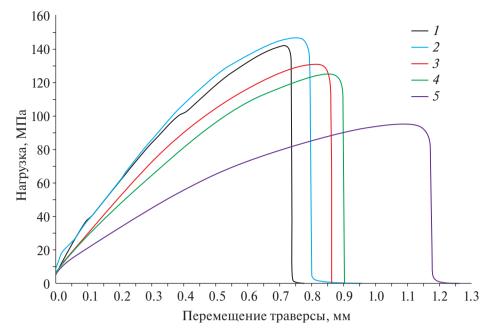

$$4Yb_{2}Si_{2}O_{7} + Si_{3}N_{4} \rightarrow$$

$$\rightarrow 2Yb_{4}Si_{2}O_{7}N_{2} + 7SiO_{2}. \qquad (6)$$

Результаты, полученные в ходе настоящего исследования, согласуются с данными работы [21], в которой при спекании $\mathrm{Si}_3\mathrm{N}_4$ с добавкой $\mathrm{Yb}_2\mathrm{O}_3$ при 1900°С основу межзеренной фазы составлял оксинитрид кремния-иттербия состава $\mathrm{Yb}_4\mathrm{Si}_2\mathrm{O}_7\mathrm{N}_2$, а в качестве сопутствующей фазы обнаруживался дисиликат иттербия $\mathrm{Yb}_2\mathrm{Si}_2\mathrm{O}_7$.

Механические свойства. На рис. 5 представлены зависимости прочности на изгиб от содержания Yb_2O_3 при комнатной температуре и при 1600°C.

В отличие от работы [19], в которой комнатная прочность образцов горячепрессованного нитрида кремния с содержанием 5-15 мас.% Yb_2O_3 практически не меняется, прочность спеченного материала по мере увеличения количества добавки линейно снижается. Данная закономерность согла-


Рис. 5. Зависимости прочности на изгиб образцов спеченного Si_3N_4 с добавками 7.5—20 мас.% Yb_2O_3 при комнатной температуре и при 1600°C.

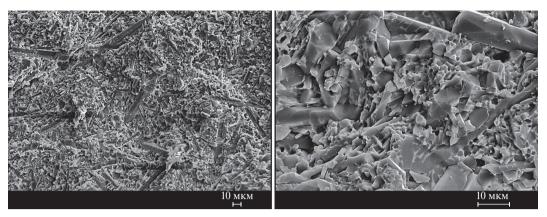
суется с результатами работы [22], авторы которой получали нитрид кремния с добавкой Yb_2O_3 методом спекания под давлением в атмосфере азота.

При 1600°С прочность керамики с увеличением содержания спекающей добавки с 7.5 до 20 мас.% плавно снижается, за исключением образца с 10 мас. Уb₂O₃, для которого наблюдается экстремум со значением прочности 147 ± 10 МПа. Данную закономерность можно объяснить следующим образом: в отличие от $Yb_4Si_2O_7N_2$, составляющего основу межзеренной фазы полученных образцов, силикаты иттербия, получающиеся как сопутствующая фаза, размягчаются при более низких температурах, что является причиной снижения высокотемпературной прочности нитрида кремния. В ряду образцов 1-5 отмечается рост содержания Yb_2SiO_5 и $Yb_2Si_2O_7$ в межзеренной фазе, который можно наблюдать по интенсивностям соответствующих пиков на рентгенограмме (рис. 2). Образец с 10 мас.% Yb₂O₃, напротив, содержит пониженное количество силикатов и, следовательно, более стоек к воздействию температуры, что и может быть причиной экстремума на кривой прочности.

Тенденция снижения высокотемпературной прочности с увеличением содержания спекающей добавки в целом характерна для спеченных Si_3N_4 -материалов. Решению данной проблемы посвящено значительное количество работ, направленных на получение композиций Si_3N_4 с минимальным количеством спекающей добавки или на кристаллизацию зернограничной фазы дополнительной термообработкой [23].

На рис. 6 представлены кривые перемещения-нагрузки при 1600°C для спеченного Si_3N_4 с добавками 7.5—20 мас.% Yb_2O_3 . Данные кривые указывают на пластический характер деформации и текучесть материала, которая растет с увеличением количества Yb₂O₃. Полученная закономерность объясняется следующим образом: основная часть межзеренной фазы представлена кристаллическим оксинитридом кремния-иттербия (рис. 2), доля которого растет с увеличением содержания добавки Yb2O3 в исходных порошках. Одновременно растет и доля силикатов иттербия, пики которых на дифрактограммах выражены заметно слабее. Согласно [18], наличие кристаллической фазы $Yb_4Si_2O_7N_2$ способствует росту высокотемпературной прочности кремния за счет более высокой температу-

Рис. 6. Диаграмма нагружения-перемещения траверсы при испытании прочности на изгиб образцов спеченного Si_3N_4 при $1600^{\circ}C$.


ры плавления и повышенной вязкости расплава $Yb_4Si_2O_7N_2$, в то время как силикаты иттербия размягчаются при существенно меньших температурах по сравнению с падением прочности нитрида кремния при температурах выше 1400°С. Кроме того, вязко-пластический характер разрушения образцов 1-5 указывает на неполную кристаллизацию межзеренной фазы и наличие аморфной составляющей по границе зерна, существенно снижающей высокотемпературную прочность материала. При этом на рентгенограммах образцов (рис. 2) характерное гало не наблюдается, что свидетельствует о достаточно малой доле аморфной фазы.

Для полного превращения силикатов иттербия в кристаллический оксинитрид кремния-иттербия необходим более тщательный выбор условий получения: температуры спекания, близкой к температуре плавления $Yb_4Si_2O_7N_2$, времени выдержки и давления. Другим подходом является использование дополнительной термообработки, заключающейся в длительной выдержке спеченного материала при температурах, близких к температуре плавления межзеренной фазы. При этом достигается кристаллизация межзеренной фазы, суще-

ственно повышается высокотемпературная прочность материала, характер разрушения меняется на "хрупкий" [18]. Тем не менее такой подход имеет теоретическое ограничение: часть жидкой фазы, "запертая" в 3-точечных кармашках, образованных соседними зернами Si_3N_4 , закристаллизовать не удается [24].

Диаграммы перемещения показывают, что наименьшей деформации при нагружении подвержен образец 1 с минимальным количеством спекающей добавки, что лучше для применения в термонагруженных конструкциях. Однако максимальное значение прочности получено для образца 2 с 10% добавки Yb_2O_3 . Поэтому добавка 10% Yb_2O_3 при 1600°C более предпочтительна.

Изображение скола образца 2 представлено на рис. 7. Микроструктура материала представлена крупными зернами нитрида кремния, соединенными между собой межзеренной фазой (более светлые области). Также видны вытянутые зерна β -Si₃N₄ длиной 30–50 мкм, армирующие материал. Темные пятна на рис. 7 представляют собой поры, свидетельствующие о неполном спекании материала.

Рис. 7. СЭМ-изображения образца Si_3N_4 -керамики с добавкой 10 мас.% Yb_2O_3 .

ЗАКЛЮЧЕНИЕ

Исследовано влияние добавки Yb_2O_3 на фазовый состав и механические свойства спеченного Si_3N_4 . Все образцы имеют относительную плотность 98.5-99.5% и состоят из β - Si_3N_4 , что свидетельствует о полноте перехода α - Si_3N_4 в β - Si_3N_4 в процессе спекания. Межзеренная фаза главным образом состоит из высокотемпературного соединения $Yb_4Si_2O_7N_2$, но отличается содержанием сопутствующих фаз Yb_2SiO_5 и $Yb_2Si_2O_7$, количество которых растет с увеличением содержания Yb_2O_3 .

Максимальную прочность на изгиб 623 ± 33 МПа при комнатной температуре имеет образец с наименьшим содержанием Yb_2O_3 . С увеличением содержания Yb_2O_3 прочность плавно снижается, зависимость носит линейный характер. При 1600° С прочность на изгиб также имеет тенденцию к снижению с ростом содержания спекающей добавки, максимальное значение 147 ± 10 МПа получено при содержании 10 мас.% Yb_2O_3 .

Вязко-пластический характер деформации при 1600° С, а также текучесть материала, которая растет с увеличением количества добавки Yb_2O_3 , указывают на неполную кристаллизацию межзеренной фазы и наличие аморфной составляющей по границе зерна, существенно снижающей его высокотемпературную прочность. Прочность Si_3N_4 при 1600° С также снижают силикаты иттербия, присутствующие в качестве сопутствующих фаз и размягчающиеся при температурах выше 1400° С. Для полного превраще-

ния силикатов иттербия в кристаллический $Yb_4Si_2O_7N_2$ необходим более тщательный выбор условий спекания: температуры, времени выдержки и давления, что является предметом дальнейшего исследования.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют, что у них нет конфликта интересов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Андриевский Р.А., Спивак И.И.* Нитрид кремния и материалы на его основе. М.: Металлургия, 1984. 136 с.
- 2. Исследование нитридов / под. ред. Самсонова Г.В. Киев: ИПМ АН УССР, 1975. 226 с.
- 3. *Katz R.N.* Commercial Applications of Silicon Nitride Based Ceramics // Mater. Technol. 1993. V. 8. № 7–8. P. 142–148.
 - https://doi.org/10.1080/10667857.1993.11784967
- CeramTec Industrial [Электронный ресурс] URL: https://www.ceramtec-industrial.com/ en/materials/silicon-nitride (дата обращения: 21.05.2024).
- 5. *Klemm H*. Silicon Nitride for High-Temperature Applications // J. Am. Ceram. Soc. 2010. V. 93. № 6. P. 1501–1522.
 - https://doi.org/10.1111/j.1551-2916.2010.03839.x
- 6. *van Roode M., Ferber M.K., Richerson D.W.*Ceramic Gas Turbine Design and Test Experience: Progress in Ceramic Gas Turbine Development. V. I. N. Y.: ASME PRESS, 2002. 722 p.
- 7. van Roode M., Ferber M.K., Richerson D.W. Ceramic Gas Turbine Component Development and Characterization: Progress in Ceramic

- Gas Turbine Development. V. II. N. Y.: ASME PRESS, 2003. 775 p.
- 8. *Kingery W.D.* Densification during Sintering in the Presence of a Liquid Phase. I. Theory // J. Appl. Phys. V. 30. 1959. P. 301–306. https://doi.org/10.1063/1.1735155
- 9. *Svoboda J., Riedel H., Gaebel R.* A Model for Liquid Phase Sintering // Acta Mater. 1996. V. 44. № 8. P. 3215–3226.
- 10. *German R.M.* Liquid Phase Sintering. N.Y.: Springer, 1985. P. 244. https://doi.org/10/1007/978-1-4899-3599-1
- 11. *Weiss J., Kaysser W.A.* Liquid Phase Sintering // Prog. Nitrogen Ceram. 1983. V. 65. P. 169–186.
- 12. *Riley F.L.* Silicon Nitride and Related Materials // J. Am. Ceram. Soc. 2000. V. 83. № 2. P. 245–265. https://doi.org/10.1111/j.1551-2916.2000.tb01182.x
- 13. *Nishimura T., Guo S., Hirosaki N., Mitomo N.* Improving Heat Resistance of Silicon Nitride Ceramics with Rare-Earth Silicon Oxynitride // J. Ceram. Soc. Jpn. 2006. V. 114. № 11. P. 880–887. https://doi.org/10.2109/jcersj.114.880
- 14. Yoshida M., Tanaka K., Kubo T, Terazono H., Tsuruzono S. Development of Ceramic Components for Gas Turbine Engine (CGT302) // Am. Soc. Mech. Enj. 1998. P. 8. https://doi.org/10.1115/98-GT-398
- 15. *Ohji T.* Long-term Tensile Creep Behavior of Highly Heat-resistant Silicon Nitride for Ceramic Gas Turbines // Ceram. Eng. Sci. Proc. 2001. V. 22 [3]. P. 159–166. https://doi.org/10.1002/9780470294680.ch18
- 16. *Торопов Н., Бондарь И., Лазарев А., Смолин Ю.* Силикаты редкоземельных металлов и их аналоги. М.: Наука, 1971. 230 с.

- 17. Levin E.M., Robbins C.R., McMurdie H.F. Phase Diagrams for Ceramists // J. Am. Ceram. Soc. 1964. 601 p.
- 18. *Nishimura T., Mitomo M., Suematsu H.* High Temperature Strength of Silicon Nitride Ceramics with Ytterbium Silicon Oxynitride // J. Mater. Res. 1997. V. 12. № 1. P. 203–209. https://doi.org/10.1557/JMR. 1997.0027
- 19. *Park H., Kim H., Niihara K.* Microstructural Evolution and Mechanical Properties of Si₃N₄ with Yb₂O₃ as a Sintering Additive // J. Am. Ceram. Soc. 1997. V. 80. № 3. P. 750–756. https://doi.org/10.1111/j.1551-2916.1997.tb02892.x
- 20. *Самсонов Г.В. и др.* Физико-химические свойства окислов. Справочник. М.: Металлургия, 1978. 472 с.
- 21. Zhu X., Hirao K., Ishigaki T., Sakka Y. Potential Use of Only Yb₂O₃ in Producing Dense Si₃N₄ Ceramics with High Thermal Conductivity by Gas Pressure Sintering // Sci. Technol. Adv. Mater. 2010. V. 11. № 6. P. 11. https://doi.org/10.1088/1468-6996/11/6/065001
- 22. *Hoffmann M.J.* High-temperature Properties of Yb-containing Si₃N₄ // NATO ASI Series. Series E: Applied Sciences. V. 276: Tailoring of mechanical properties of Si₃N₄ ceramics / Eds. Hoffmann M. J., Petzow G. Dordrecht: Kluwer, 1993. P. 233–244.
- 23. Clarke D.R., Lange F.F., Schnittgrund G.D. Strengthening of a Sintered Silicon Nitride by a Post-Fabrication Heat Treatment // J. Am. Ceram. Soc. 1982. V. 65. № 4. P. 51–53. https://doi.org/10.1111/j.1551-2916. 1982.tb10415.x
- 24. *Raj R., Lange F.F.* Crystallization of Small Quantities of Glass (or a Liquid) Segregated in Grainboundaries // Acta Metall. 1981. V. 29. № 12. P. 1993–2000.
 - https://doi.org/10.1016/j.0001-6160(81)90036-5