УЛК 546.05

ИЗВЛЕЧЕНИЕ ЛИТИЯ ИЗ β-СПОДУМЕНА МЕТОДОМ ИОННОГО ОБМЕНА В РАСПЛАВАХ СОЛЕЙ НАТРИЯ

© 2023 г. Р. В. Кулумбегов¹, Л. М. Делицын^{1, *}, И. А. Беляев¹, Н. Н. Клименко^{1, 2}, А. Б. Тарасенко¹, О. С. Попель¹

¹Объединенный институт высоких температур Российской академии наук, ул. Ижорская, 13, стр. 2, Москва, 127412 Россия

²Российский химико-технологический университет им. Д.И. Менделеева, ул. Героев Панфиловцев, 20, Москва, 125480 Россия

*e-mail: delitzin@ihed.ras.ru

Поступила в редакцию 18.04.2023 г.
После доработки 27.07.2023 г.
Принята к публикации 28.07.2023 г.

Исследование проведено с целью разработки технологии извлечения лития из сподуменового сырья. В работе показано, что одним из перспективных направлений переработки сподумена является его спекание с ацетатом натрия. Показано, что в результате реакции между компонентами кристаллическая структура сподумена не разрушается. За счет реакции ионного обмена между $CH_3COONa\cdot 3H_2O$ и $LiAlSi_2O_6$ образуется водорастворимый ацетат лития и не растворимый в воде алюмосиликат натрия $(NaAlSi_2O_6)$. Растворенный в воде ацетат лития переводится в карбонат лития добавлением раствора Na_2CO_3 . Осажденный карбонат лития практически не содержит посторонних примесей. Изучено влияние параметров процесса на степень извлечения Li^+ из сподумена.

Ключевые слова: сподумен, карбонат лития, ацетат натрия

DOI: 10.31857/S0002337X23080092, EDN: HZWXNU

ВВЕДЕНИЕ

В современном постоянно развивающемся мире трудно переоценить роль лития как компонента высокотехнологичных продуктов. Помимо традиционных сфер использования лития с середины XX века — электролиз алюминия, производство стекла и керамики, органический синтез [1—3], смазочные материалы и др. — наиболее динамично развивающейся областью применения лития является производство накопителей энергии — перезаряжаемых литий-ионных батарей, широко применяемых в портативной электронике и электрическом транспорте [4].

По данным [5], рост мирового рынка лития в период с 2015-го по 2024 г. составит 221 млрд долларов только за счет электрического транспорта. При этом цены на карбонат лития — наиболее распространенное сырье для производства анодных и катодных материалов литий-ионных аккумуляторов — выросли за последнее время на 40—60% [6].

Россия при значительных запасах литиевого сырья не имеет собственного его производства [7—9]. Основные запасы лития в России оцениваются в 8 млн т, в т.ч. ~7.0 млн т в пегматитовых месторождениях Кольского полуострова и ~1 млн т в Восточно-Саянском регионе. Запасы сподуме-

новой руды Кольского полуострова локализованы в 3 месторождениях [9–11].

Из множества соединений лития основное практическое значение имеет карбонат лития, являющийся прекурсором для производства литийионных накопителей. Основными промышленными источниками лития служат рассолы термальных вод и сподумен. В целом же спектр литиевого сырья достаточно широк, основные вопросы связаны с эффективностью методов извлечения и долей содержания лития в исходном сырье. Традиционная технология извлечения лития из сподумена предполагает предварительный нагрев исходного сырья до 1000—1100°С (декрипитация) для монотропного $\alpha \to \beta$ -перехода, а затем обработка кислотой для окончательного разрушения структуры исходного материала. Основными методами переработки В-сподумена с получением соединений лития являются [12–14]:

сернокислотный метод

$$2\text{LiAlSi}_2\text{O}_6 + \text{H}_2\text{SO}_4 \rightarrow \text{Li}_2\text{SO}_4 + 2\text{HAlSi}_2\text{O}_6, \quad (1)$$

метод сульфатного вскрытия, в основу которого положено спекание β-сподумена с сульфатом калия или сульфатом натрия [12]

$$2\text{LiAlSi}_2\text{O}_6 + \text{K}_2\text{SO}_4 \rightleftharpoons \text{Li}_2\text{SO}_4 + 2\text{KAlSi}_2\text{O}_6, (2)$$

 — щелочной способ переработки сподумена, основанный на спекании руды с известняком или с известью

$$2\text{LiAlSi}_2\text{O}_6 + 8\text{CaO} \rightarrow \text{Li}_2\text{O}\cdot\text{Al}_2\text{O}_3 + + 4[2\text{CaO}\cdot\text{SiO}_2].$$
 (3)

К недостаткам сернокислотного метода можно отнести высокий расход 93%-ной кислоты для извлечения более 80% лития и требования к аппаратуре из-за агрессивной среды протекания процесса. Кроме того, из руды в раствор переходит некоторое количество алюминия, магния и железа, которые необходимо удалять, что усложняет технологию [12]. Приемлемое извлечение лития из руды щелочным и сульфатным методами возможно только при температурах 1000—1200°С, что создает осложнения с аппаратурным оформлением процесса и затратами энергии.

Тем не менее ведутся поиски низкотемпературного метода вскрытия сподумена. В работе [15] при температуре 540°С инициируется процесс вскрытия сподумена с помощью NaF, при 600°C извлечение лития достигает 90%. Авторам [16] удалось извлечь литий из сподумена с помощью NH₄HF₂ при достаточно умеренных температурах (155–160°C), однако в обоих случаях образуется нерастворимый фторид лития, который приходится выщелачивать из сподумена серной кислотой. В работе [17] сделано предположение о возможности применения модифицированного метода Байера для извлечения лития из α-сподумена на основе аналогий в структурах иллита, диаспора и α-сподумена. Проведенные эксперименты показали возможность разложения α-сподумена в щелочной среде. При этом использование СаО и оптимизация температурных режимов довели эффективность выщелачивания до 93%. Наилучшие результаты достигались при t = 250°C, концентрации NaOH 400 г/л, продолжительности 4.5 ч, расходе щелочи на единицу массы руды 7 мл/г. Соотношение масс исходного α-сподумена и оксида кальция при этом составляло 0.5 к 1. Контроль продуктов реакции методом рентгеновской дифракции показал, что отсутствие добавки СаО Na₈Al₆ формированию $Si_6O_{24}(OH)_2 \cdot 2H_2O$ и сохранению непрореагировавшего LiAlSi₂O₆. Суммарная реакция описывается **уравнением**

LiAlSi₂O₆ + 2CaO + 3NaOH + 2H₂O
$$\rightarrow$$

 \rightarrow 2NaCaHSiO₄ + LiOH + NaAl(OH)₄. (4)

Модификация традиционного метода разложения в горячей серной кислоте представлена в работе [14]. Так как наиболее энергоемкими процессами являются нагрев образца для перехода α -в β -фазу и отжиг уже смешанного с серной кислотой β -сподумена, то отжиг в обычной муфельной печи при 250° C заменен на микроволновую обра-

ботку. Время обработки удалось сократить с 1 ч до 20 с, удельный расход энергии для извлечения сопоставимого количества лития составил 15.4 кДж вместо 10.4 МДж. Дополнительный размол использовался для снижения расхода серной кислоты. В работе [18] показана возможность извлечения лития из сподумена методом ликвационной плавки. Применение микроволнового излучения для перевода сподумена из α- в β-фазу предложено авторами [19]. Характерное время термообработки без снижения качества извлечения лития сократилось при этом с 1 ч до нескольких минут с соответствующим снижением энергопотребления. В [20] предлагается проводить перевод сподумена из α- в β-фазу в реакторе с кипящим слоем. Достигнуто снижение времени провеления реакции с 1 ч ло 25-40 мин при температурах 1050-1070°С.

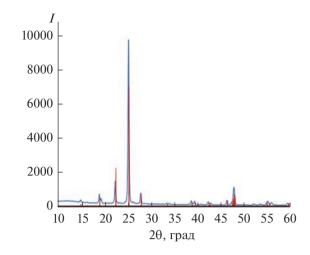
В [21] рассматривается замена серной кислоты на плавиковую в процессе переработки β -фазы. Процесс проводился в течение 20 мин при температуре 75°С, использовалась 7%-ная плавиковая кислота при постоянном перемешивании. Полученная смесь обрабатывалась натриевой щелочью с возможностью последующего выделения Na_3AlF_6 и Na_2SiF_6 в твердой фазе. При этом степень извлечения алюминия и кремния достигала 92%. Полученный раствор содержал литиевую щелочь, которая переводилась в карбонат барботированием диоксида углерода. Степень извлечения лития составила около 90%.

Снижение нагрузки на окружающую среду за счет отказа от использования серной кислоты и формирования замкнутого цикла на основе сульфата калия и/или сульфата натрия описано в [22, 23]. После перевода в β -фазу высокотемпературной обработкой сподумен обрабатывали раствором Na_2SO_4 вместо серной кислоты, т.к. именно это вещество наряду с карбонатом лития образуется в конце всей технологической цепочки. В [24] упомянуто применение ацетата натрия для производства солей лития из сподумена, однако параметры процесса использования ацетата натрия для получения карбоната лития из β -сподумена не указаны.

Среди всех методов извлечения лития из сподуменов сернокислотный является единственным, применяемым в промышленности, и наиболее распространенным направлением исследований.

Цель данной работы — поиск низкотемпературного и относительно простого способа получения карбоната лития из сподумена. При этом речь идет о продукте высокой степени чистоты, не содержащем посторонних примесей. Полученные данные могут быть использованы при разработке технологии переработки сподуменовых руд Кольского полуострова.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ


Для проведения экспериментальных исследований были использованы: природный минерал сподумен (LiAlSi $_2O_6$) месторождения Васин Мыльк (Кольский полуостров), формиат натрия — HCOONa "х. ч.", оксалат натрия Na $_2C_2O_4$ "х. ч.", ацетат натрия трехводный CH $_3$ COONa "3H $_2$ O "ч. д. а.", ацетат натрия CH $_3$ COONa "х. ч.", нитрат натрия NaNO $_3$ "ч.", карбонат натрия Na $_2$ CO $_3$ "х. ч.".

Сподумен для активации был подвергнут декрипитации при 1050°С в течение 60 мин для перехода α - в β -фазу (рис. 1). Декрипитация вызывает изменение его кристаллической структуры, которая становится сопоставимой по текстуре с природными цеолитами. В таком кристалле возможно проведение обмена ионов лития на катионы других шелочных металлов.

После декрипитации вспученный материал просеивали на лабораторном рассеве У1-ЕРЛ-10 для разделения по классам крупности, отделения от примесей минералов, содержащих Мп и Fe, полевого шпата и др. Фракция <0.2 мм представляет собой сподуменовый концентрат (рис. 1), химический состав которого приведен в табл. 1.

Шихту готовили смешением сподумена (25-66%) с солями натрия (75-33%). Термическую обработку шихты $(1-10 \ r)$ осуществляли в муфельной печи ПМ-14М1П-1250Т при температуре 30-350°C, на воздухе, в фарфоровых тиглях и тиглях из стали 12Х18Н10Т. Полученный спек выщелачивали дистиллированной водой при постоянном перемешивании на магнитной мешалке MSH-300 BIOSAN в течение 0.5 ч при комнатной температуре. Нерастворимый остаток отфильтровывали, промывали дистиллированной водой и высушивали при 105°С. Фильтрат упаривали до концентрации, близкой к значению растворимости применяемой соли. Из полученного концентрата осаждали Li_2CO_3 при t = 95°C (растворимость карбоната лития с повышением температуры уменьшается) добавлением насыщенного раствора Na₂CO₃. Осадок отфильтровывали и промывали горячей ($t = 95^{\circ}$ C) дистиллированной водой. Количественный анализ лития и натрия в осадке определяли с помощью пламенно-фотометрического анализатора ПФА-378.

Рентгенофазовый анализ проводили на дифрактометре ДРОН-3 на порошкообразных образцах дисперсностью менее 60 мкм. Сканирование выполняли в диапазоне 20 от 10° до 60° с шагом 0.03° и скоростью сканирования 2 град/мин¹. Идентификацию фаз осуществляли с использованием электронного каталога JCPDS.

Рис. 1. Рентгеновская дифрактограмма сподумена после декрипитации (показаны рефлексы β -сподумена стандарт, номер карточки 35-0797, база данных Pcpdfwin-ICPDS).

Определение концентрации основных оксидов и некоторых микроэлементов в пробах выполнено методом рентгеноспектрального флуоресцентного анализа (ХRF) на вакуумном спектрометре последовательного действия (с дисперсией подлине волны), модель Axios mAX, по методике HCAM BUMC 439-PC 2010 г., обеспечивающей получение результатов III категории точности количественного анализа по ОСТ РФ 41-08-205-04, и методом масс-спектрометрии с индукционно-связанной плазмой по методике HCAM № 501-МС 2017 г.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Спекание LiAlSi $_2O_6$ с солями натрия осуществляли при температуре плавления соответствующей соли, которую брали в таком соотношении, при котором было бы одинаковое количество Na $^+$ (табл. 2). Наибольшее извлечение Li $^+$ из сподумена наблюдалось при использовании в качестве реагента CH $_3$ COONa $^+$ 3H $_2$ O, в связи с чем он использовался для дальнейших исследований влияния параметров процесса на извлечение Li $^+$ из сподумена.

Изучение влияние параметров спекания для других солей со сподуменом, а также их взаимное влияние на извлечение Li⁺ из сподумена также представляет большой интерес и в дальнейших работах будет продолжено.

Значительное влияние на извлечение Li^+ оказывает отношение количества соли к сподумену (рис. 2). Взаимодействие ацетата натрия с β -сподуменом начинается при температуре $50-60^{\circ}$ С, однако извлечение Li^+ не превышает 3%. Извлечение Li^+ в оптимальном температурном диапазоне $280-320^{\circ}$ С (рис. 3) составляет 94-95 мас. %, что, ве-

¹ Проведено в Центре коллективного пользования им. Д.И. Менделеева в рамках государственного контракта № 13.ЦКП.21.0009.

Li₂O Na₂O MgO Al₂O₃ SiO₂ K₂O CaO TiO₂ MnO Fe₂O₂ SO_3 0.3 < 0.05 27.9 65.0 0.0 0.0 0.0 0.1 0.1 6.6 < 0.02

Таблица 1. Химический состав (мас. %) сподуменового концентрата (фракция <0.2 мм)

Таблица 2. Извлечение Li⁺ из сподумена в зависимости от природы и количества реагента (время спекания 45 мин)

Соль	Отношение соль/сподумен, мас. %	Температура, °С	Извлечение Li ⁺ , мас. %
HCOONa	0.5	260	47.3
$Na_2C_2O_4$	0.495	280	4.8
CH ₃ COONa·3H ₂ O	1.0	320	70.96
CH ₃ COONa	0.6	320	65.84
NaNO ₃	0.625	310	2.1

роятно, связано с образованием расплава соли, в котором скорость ионного обмена возрастает.

Увеличение температуры реакции выше 325°C не целесообразно вследствие разложения ацетата натрия на ацетон и карбонат натрия.

Замещение лития на натрий в сподумене происходит за счет реакции ионного обмена, которую в упрощенном виде можно представить как

$$CH_3COONa\cdot 3H_2O + LiAlSi_2O_6 \rightarrow$$

 $\rightarrow NaAlSi_2O_6 + CH_3COOLi + 3H_2O.$ (5)

Методом РФА установлено, что промытый дистиллированной водой после реакции нерастворимый осадок представляет собой NaAlSi₂O₆ (рис. 4). Образовавшийся по реакции (5) водный раствор ацетата лития-натрия упаривали до границы начала кристаллизации ацетата натрия, после чего

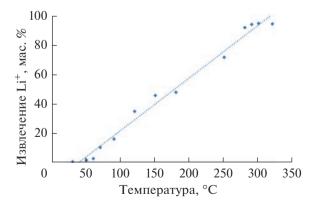
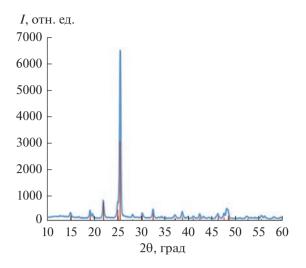

100 95 Извлечение Li⁺, мас. 80 85 80 75 70 65 60 0.5 1.0 1.5 2.0 2.5 3.0 3.5 CH₃COONa·3H₂O/LiAlSi₂O₆

Рис. 2. Зависимость извлечения ${\rm Li}^+$ из сподумена от количества ${\rm CH_3COONa\cdot 3H_2O}$ ($t=320^{\circ}{\rm C}$, продолжительность реакции 45 мин).


обрабатывали насыщенным раствором Na_2CO_3 . В осадок выпадает слаборастворимый Li_2CO_3 , дифрактограмма которого приведена на рис. 5, при этом образуется ацетат натрия, который после высушивания может быть направлен на начальную стадию процесса

$$CH_3COOLi + Na_2CO_3 \rightarrow$$

 $\rightarrow CH_3COONa + Li_2CO_3 \downarrow$. (6)

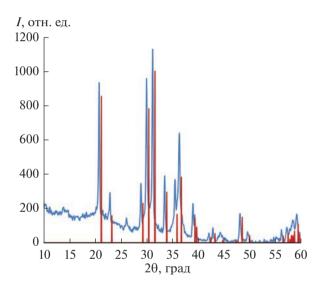

Фактически расходным материалом в изучаемом процессе является только Na_2CO_3 , что делает процесс более выгодным по сравнению с традиционным сернокислотным методом, в котором помимо Na_2CO_3 в качестве расходных материалов используют H_2SO_4 , $CaCO_3$, $Ca(OH)_2$ и сажу [13]. Таким образом удается получить достаточно чистый карбонат лития (табл. 3).

Рис. 3. Извлечение Li^+ в зависимости от температуры реакции (продолжительность реакции 45 мин, $\text{CH}_3\text{COONa-3H}_2\text{O}/\text{LiAlSi}_2\text{O}_6 = 2/1$).

Рис. 4. Рентгеновская дифрактограмма не растворимого в воде продукта реакции $CH_3COONa\cdot 3H_2O$ с LiAlSi $_2O_6$ (показаны рефлексы NaAlSi $_2O_6$ стандарт, номер карточки 80-1561, база данных Pcpdfwin-ICPDS).

Рис. 5. Рентгеновская дифрактограмма осажденного карбоната лития (показаны рефлексы Li_2CO_3 стандарт, номер карточки 09-0359, база данных Pcpdfwin-ICPDS).

Выход сухого Li_2CO_3 составляет 65–70%, поскольку часть его остается в растворе (20–25%), часть возвращается обратно в раствор при его промывке от растворимых солей натрия. Очевидно, большое содержание ацетата натрия (примерно в 11 раз больше, чем ацетата лития) не позволяет достаточно сконцентрировать раствор, что позволило бы в большей степени осаждать Li_2CO_3 . Возможно, применение механического перемешивания на стадии спекания позволит снизить количество ацетата натрия на стадии спекания со сподуменом.

ЗАКЛЮЧЕНИЕ

Метод вскрытия сподумена ацетатом натрия может быть использован для получения карбоната лития высокой чистоты. В результате реакции между компонентами не происходит образования растворимых в воде соединений алюминия и кремния. Поскольку не происходит реакции между стенками металлического реактора и шихтой, железо в состав продуктов реакции не попадает, что исключает дополнительные стадии очистки. Оптимальная температура процесса лежит в диапазоне 290—320°С. Увеличение содержания соли в шихте положительно влияет на извлечение Li⁺, которое при оптимальной температуре достигает 95%.

Большое содержание ацетата натрия в растворе по отношению к ацетату лития не позволяет добиться выхода конечного продукта более 75%. Выход Li_2CO_3 может быть увеличен при снижении расхода $\text{CH}_3\text{COONa}\cdot 3\text{H}_2\text{O}$, поскольку появится возможность упаривать раствор до более высоких концентраций CH_3COOLi . Снизить концентрацию $\text{CH}_3\text{COONa}\cdot 3\text{H}_2\text{O}$ в шихте с сохранением высокого извлечения лития из сподумена, вероятно, поможет постоянное перемешивание шихты при ее спекании.

Таблица 3. Содержание основных металлов и кремния в Li₂CO₃ по данным атомно-эмиссионного анализа

					,				
Li	Na	Mg	Al	Si	Ca	Mn	Fe	Sr	прочие
96.480	1.911	0.112	0.029	0.058	1.258	0.004	0.020	0.012	0.116
95.935	2.751	0.103	0.031	0.063	1.047	0.004	0.012	0.012	0.043
96.727	1.911	0.075	0.031	0.065	1.005	0.004	0.019	0.011	0.153

Содержание, мас. %

СПИСОК ЛИТЕРАТУРЫ

- 1. *Пожарский А.Ф.*, *Рябцова О.В.* Литий и магнийорганические соединения нафталинового ряда в органическом синтезе // Успехи химии. 2006. Т. 75. № 8. С. 791—819. https://doi.org/10.1070/rc2006v075n08abeh003611
- 2. Вагизов А.М., Хусаинова Г.Р., Ахметов И.Г., Сахабутдинов А.Г. Сополимеризация бутадиена-1,3 и стирола под действием Н-бутиллития в присутствии аминосодержащего модификатора в гексане // Журн. прикл. химии. 2016. Т. 89. № 1. С. 95—102. https://doi.org/10.47664/0022-9466-2020-79-4-174-179
- 3. *Swain B*. Recovery and Recycling of Lithium: A Review // Sep. Purif. Technol. 2017. V. 172. P. 388–403. https://doi.org/10.1016/j.seppur.2016.08.031
- Song Y., Zha Z. Recovery of Lithium from Spent Lithium-ion Batteries Using Precipitation and Electrodialysis Techniques // Sep. Purif. Technol. 2018. V. 206. P. 335–342. https://doi.org/10.1016/j.seppur.2018.06.022
- Yu J., He Y., Ge Z., Li H., Xie W., Wang S. A Promising Physical Method for Recovery of LiCoO₂ and Graphite from Spent Lithium-ion Batteries: Grinding Flotation // Sep. Purif. Technol. 2018. V. 190. P. 45–52. https://doi.org/10.1016/j.seppur.2017.08.049
- 6. *Kuang G., Liu Y., Li H., Xing S., Li F., Guo H.* Extraction of Lithium from β-Spodumene Using Sodium Sulfate Solution // Hydrometallurgy. 2018. V. 177. P. 49–56. https://doi.org/10.1016/j.hydromet.2018.02.015
- Наумов А.В. Литий: Сверхвозможности суперметалла // Редкие земли. 2016. Вып. 2(7). С. 140–149.
- 8. *Юсупов Т.С., Исупов В.П. и др.* Исследование вещественного состава и разделимости минералов техногенного сырья // Физико-технические проблемы разработки полезных ископаемых. 2014. № 6. С. 144—150.
- 9. *Владимиров А.Г., Ляхов Н.З., Загорский В.Е., Мака-гон В.М. и др.* Литиевые месторождения сподуменовых пегматитов Сибири // Химия в интересах устойчивого развития. 2012. № 20. С. 3—20.
- 10. *Морозова Л.Н.* Колмозёрское литиевое месторождение редкометальных пегматитов: новые данные по редкоэлементному составу (Кольский полуостров) // Литосфера. 2018. Т. 18. № 1. С. 82—98. https://doi.org/10.24930/1681-9004-2018-18-1-082-098
- 11. Морозова Л.Н., Серов П.А., Кунакузин Е.Л., Борисенко Е.С. и др. Кольский редкометальный пегматитовый пояс: основные черты геологического строения // Тр. Ферсмановской научной сессии ГИ КНЦ РАН. 2020. Т. 17. С. 374—378. https://doi.org/10.31241/FNS.2020.17.071
- 12. *Кулифеев В.К., Миклушевский В.В., Ватулин И.И.* Литий. М.: МИСИС, 2006. С. 126–127.
- Остроушко Ю.И., Бучихин П.И., Алексеева В.В. и др. Литий, его химия и технология. М.: Атомиздат, 1960. С. 201.

- Nasim Kh. Salakjani Pritam Singh, Aleksandar N. Nikoloski. Acid Roasting of Spodumene: Microwave vs. Conventional Heating // Miner. Eng. 2019. V. 138. P. 161–167. https://doi.org/10.1016/j.mineng.2019.05.003
- Rosales G.D., Resentera A.C., Gonzalez J.A., Wuilloudb R.G., Rodriguez M.H. Efficient Extraction of Lithium from β-Spodumene by Direct Roasting with NaF and Leaching // Chem. Eng. Res. Design. 2019. V. 150. P. 320–326. https://doi.org/10.1016/j.cherd.2019.08.009
- Resentera A.C., Esquivel M.R., Rodriguez M.H. Low-Temperature Lithium Extraction from α-Spodumene with NH₄HF₂: Modeling and Optimization by Least Squares and Artificial Neural Networks // Chem. Eng. Res. Design. 2021. V. 167. P. 73–83. https://doi.org/10.1016/j.cherd.2020.12.023
- Yunfeng S., Tianyu Zh., Lihua He, Zhongwei Zh., Xuheng Li. A Promising Approach for Directly Extracting Lithium from α-Spodumene by Alkaline Digestion and Precipitation as Phosphate // Hydrometallurgy. 2019. V. 189. P. 105141. https://doi.org/10.1016/j.hydromet.2019.105141
- 18. Делицын Л.М., Кулумбегов Р.В., Синельщиков В.А., Попель О.С., Сульман М.Г. Ликвационная плавка системы LiAlSi₂O₆—Na₂SO₄—NaF как метод получения фторида лития // Неорган. материалы. 2022. Т. 58. № 10. С. 1101—1110. https://doi.org/10.31857/S0002337X22100062
- 19. Mohammad R., Shihua H., Sagzhanov D., Behzad Vaziri Hassa, Tania M. Slawecki, Dinesh Agrawal, Hamid Akbari, Robert Mensah-Biney. Microwave-Assisted Calcination of Spodumene for Efficient, Low-Cost and Environmentally Friendly Extraction of Lithium // Powder Technol. 2022. V. 397. P. 116992. https://doi.org/10.1016/j.powtec.2021.11.036
- 20. *Gasafi E., Pardemann R.* Processing of Spodumene Concentrates in Fluidized-Bed Systems // Miner. Eng. 2020. V. 148. P. 106205. https://doi.org/10.1016/j.mineng.2020.106205
- 21. Rosales G.D., María del Carmen Ruiz, Rodriguez M.H.
 Novel Process for the Extraction of Lithium from βSpodumene by Leaching with HF // Hydrometallurgy.
 2014. V. 147–148. P. 1–6.
 https://doi.org/10.1016/j.hydromet.2014.04.009
- 22. *Плющев В.Е.*, *Степин Б.Д*. Химия и технология соединений лития, рубидия и цезия. М.: Химия, 1970. С. 407.
- 23. Плющев В.Е. Исследование взаимодействия минералов, содержащих редкие щелочные элементы, с солями и окислами в процессах спекания и сплавления. О взаимодействие сподумена с сульфатом натрия // Химия и хим. технология. 1961. № 3. С. 463—470.
- Большаков К.А. Химия и технология редких и рассеянных элементов. Ч. 1. Изд. 2-е. М.: Высш. школа, 1976. С. 58.