Compensatory movements in the source zone of the 2023 high-magnitude earthquake swarm in Herat province, Afghanistan

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A source of a strong earthquake, as a rule, consists of subsources which are identified by waveform modeling. The modeling does not yield an unambiguous result. In this paper, we present an example when two significantly different focal mechanism solutions are published for the same earthquake: in one solution, the subsources are characterized by a similar type of faulting, while in the other solution, the last subsource has an opposite mechanism. In (Vakarchuk et al., 2013), this discrepancy was interpreted by the realization of a compensatory motion. The compensatory movements are detected not only in the subsources but also at the scale level of the entire source zone, which manifest itself in a certain regularity of the aftershock mechanisms discovered in the study of the 1970 Dagestan earthquake by Kuznetsova et al. (1976). In this paper, perhaps for the first time, compensatory movements are detected in a high-magnitude earthquake swarm without a pronounced main shock, which occurred in 2023 in Herat Province, Afghanistan. The results are supported by a series of seismological and satellite interferometric data.

Texto integral

Acesso é fechado

Sobre autores

R. Tatevossian

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Autor responsável pela correspondência
Email: ruben@ifz.ru
Rússia, Moscow, 123242

A. Ponomarev

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: ruben@ifz.ru
Rússia, Moscow, 123242

E. Timoshkina

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: ruben@ifz.ru
Rússia, Moscow, 123242

Zh. Aptekman

Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: ruben@ifz.ru
Rússia, Moscow, 123242

Bibliografia

  1. Арефьев С.С. Афтершоки, форшоки и рои землетрясений // Физика Земли. 2002. № 1. С. 60–77.
  2. Баранов С.В., Шебалин П.Н. Закономерности постсейсмических процессов и прогноз опасности сильных афтершоков. М.: РАН. 2019. 218 с.
  3. Баранов С.В., Шебалин П.Н. О прогнозировании афтершоковой активности. 3. Динамический закон Бота // Физика Земли. 2018. № 6. С. 129–136. doi: 10.1134/S0002333718060029
  4. Бачманов Д.М., Кожурин А.И., Трифонов В.Г. База данных активных разломов Евразии // Геодинамика и тектонофизика. 2017. Т. 8. № 4. С. 711–736.
  5. Вакарчук Р.Н., Татевосян Р.Э., Аптекман Ж.Я., Быкова В.В. Рачинское землетрясение 1991 г. на Кавказе: многоактная модель очага с компенсационным типом движения // Физика Земли. 2013. № 5. С. 58–64.
  6. Костров Б.В., Шебалин Н.В. Движения в очагах афтершоков Дагестанского землетрясения и теория разрушения. Исследования по физике землетрясений. М.: Наука. 1976. С. 87–93.
  7. Кузнецова К.И., Аптекман Ж.Я., Шебалин Н.В., Штейнберг В.В. Афтершоки последействия и афтершоки развития очаговой зоны Дагестанского землетрясения. Исследования по физике землетрясений. М.: Наука. 1976. С. 94–113.
  8. Смирнов В.Б., Пономарев А.В. Физика переходных режимов сейсмичности. М.: РАН. 2020. 412 с.
  9. Татевосян Р.Э., Аптекман Ж.Я. Этапы развития афтершоковых последовательностей сильнейших землетрясений мира // Физика Земли. 2008. № 12. С. 3–23.
  10. Aki K., Richards P.G. Quantitative Seismology. Theory and Methods. 1980. V. I. 557 p.
  11. Båth M. Lateral inhomogeneities of the upper mantle // Tectonophysics. 1965. V. 2(6). P. 483–514.
  12. Berberian M., King G. Towards a Paleogeography and Tectonic Evolution of Iran // Canadian Journal of Earth Sciences. 1981. V. 18. P. 210–265. DOI:https://doi.org/10.1139/e81-019
  13. Dziewonski A.M., Woodhouse J.H. An experiment in systematic study of global seismicity: centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981 // J. Geophys. Res. 1983. V. 88. B4. P. 3247–3271.
  14. Fuenzalida H., Rivera L., Haessler H., Legrand D., Philip H., Dorbath L., McCormack D., Arefiev S., Langer C., Cisternas A. Seismic source study of the Racha-Dzhava (Georgia) earthquake from aftershocks and broad-band teleseismic body-wave records: an example of active nappe tectonics // Geophys. J. Inter. 1997. V. 130. P. 29–46.
  15. Kostrov B.V., Das Sh. Principles of earthquake source mechanics. Cambridge University press. 1988. 286 p.
  16. Omori F. On the aftershocks // Rep. Imp. Earthquake Invest. Comm. 1894. V. 2. P. 103–139.
  17. Siehl A. Structural setting and evolution of the Afghan orogenic segment – a review // Geological Society. London Special Publications. 2015. V. 427. P. 57. 88. https://doi.org/10.1144/SP427.8
  18. Styron R., Pagani M. The GEM Global Active Faults Database // Earthquake Spectra. 2020. V. 36. №1 (suppl.). P. 160–180. doi: 10.1177/8755293020944182
  19. Stocklin J., Nabavi M.H. Tectonic Map of Iran 1:2 500 000. Geological Survey of Iran. 1973.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. (a) – The mechanism of the earthquake of 06/08/1993 (red), preceding (gray) and subsequent earthquakes within six months (black) (Global CMT catalog. URL: http://www.globalcmt.org. The last download was in 2023); (b) – the earthquake of 05.12.1997. The legend is similar to (a).

Baixar (302KB)
3. Fig. 2. The mechanism of the earthquake of 15.01.2009 (red) and its strongest aftershock within six months (Global CMT catalog. URL: http://www.globalcmt.org. The last download was in 2023).

Baixar (131KB)
4. Fig. 3. Seismotectonic framing of the earthquake area. The frame shows the epicentral region of the swarm. The gray arrows indicate the direction of immersion of the relict subduction zones. Active faults according to [Bachmanov et al., 2017] are shown by red lines.

Baixar (445KB)
5. Fig. 4. Mechanisms of strong earthquake foci (Mw ≥ 7.0) according to the Global CMT source (1976-2023) (Global CMT catalog. URL: http://www.globalcmt.org. The last download was in 2023). The mechanisms of earthquakes in the Pamir – Hindu Kush zone with a hypocenter depth of 70 km or more are painted in black. The dotted line shows the area presented in detail in Fig. 5. Active faults according to [Bachmanov et al., 2017] are shown by red lines.

Baixar (374KB)
6. Fig. 5. Mechanisms of earthquake foci (Mw ≥ 6.0) (Global CMT catalog. URL: http://www.globalcmt.org. The last download was in 2023). The mechanisms of earthquakes with a hypocenter depth of 70 km or more are painted in black. The mechanisms of the Herat earthquakes are highlighted in red. The circle shows the area shown in detail in Fig. 6. Active faults according to [Bachmanov et al., 2017] are shown by red lines.

Baixar (475KB)
7. Fig. 6. Mechanisms of earthquake foci (Mw ≥ 6.0) according to the Global CMT source (Global CMT catalog. URL: http://www.globalcmt.org. Last downloaded in 2023) in the vicinity of the Herat earthquakes. The mechanisms of the Herat earthquakes are highlighted in red. Earthquake numbers correspond to the table. Active faults according to [Bachmanov et al., 2017] are shown by red lines.

Baixar (280KB)
8. Рис. 7. Фазовая неразвернутая интерферограмма для двух землетрясений 07.10.2023 г. Красные звезды показывают положение эпицентров землетрясений с магнитудой 6.3 (первое по времени событие произошло севернее второго).

Baixar (643KB)
9. Fig. 8. (a) – The field of displacements of the Earth's surface in the direction of the satellite in meters on the Google Earth Pro map. Red color – offsets towards the satellite (“lifting”), blue – “lowering”; (b) – the same displacement map (starting from 50 mm) on the digital ETOPO1 relief model.

Baixar (785KB)
10. Fig. 9. Phase non-inverted interferogram for two earthquakes on October 11 and 15, 2023. Each color cycle (from blue to red) corresponds to a phase shift of 2π of the radar signal reflected from the same area of the earth's surface during the first and second surveys.This is equal to a displacement of 28 mm in the direction of the satellite during the survey period.

Baixar (717KB)
11. Fig. 10. The field of displacements of the earth's surface in the direction of the satellite in fractions of a meter on the Google Earth Pro map: red color – displacements towards the satellite (“raising"); blue – “lowering". The offsets are shown starting from 50 mm on the digital ETOPO1 relief model: purple stars are epicenters according to GCMT data; green ones are from the USGS website.

Baixar (254KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».