Relative paleointensity of geomagnetic field during the last 9000 years estimated by the pseudo Thellier method from the bottom sediments of Lake Shira, Northern Khakassia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The results of rock magnetic studies and determination of relative paleointensity from sediments of Lake Shira, Khakassia, are presented. The NRM carrier minerals were determined from the hysteresis parameters, thermomagnetic and X-ray diffraction (XRD) analyses. The age of the sediments was determined by radiocarbon dating. According to these measurements, the column spans about 9100 years. The qualitative determinations of relative paleointensity were obtained from linear segments of the pseudo-Arai–Nagata diagrams. The quality of the determinations was evaluated by the following criteria: number of points used to calculate the slope; quality criterion (q), fraction of NRM destroyed in the paleointensity determination interval, and relative paleointensity determination error (σ). According to rock magnetic studies and XRD analysis, the magnetization carriers are represented mainly by single-domain and pseudo-single-domain magnetite and hematite. The comparison of the obtained series of relative paleointensity data with both the model paleointensity values calculated for Shira coordinates from various models (CALS10K.1b [Korte et al., 2011], PFM9k.1 [Nilsson et al., 2014], HFM.OL1.AL1, CALS10k.2 ARCH10k.1 [Constable et al., 2016]) and with absolute paleointensity, as well as the aggregate results of the studies on sedimentary and igneous rocks and on archaeomagnetic objects has shown that these data are in good agreement with each other and have common trends. This provides a rationale for using this methodology to determine paleointensity from sediments of modern lakes using the pseudo-Thellier method.

About the authors

D. M. Kuzina

Kazan (Volga Region) Federal University

Author for correspondence.
Email: di.kuzina@gmail.com

Институт геологии и нефтегазовых технологий

Russian Federation, Kazan, 420008

V. P. Shcherbakov

Geophysical Observatory “Borok,” Schmidt Institute of Physics of the Earth, Russian Academy of Sciences

Email: shcherbakovv@list.ru
Russian Federation, Borok, Yaroslavl oblast, 152742

N. V. Salnaia

Geological Institute, Russian Academy of Sciences

Email: natasavi@inbox.ru
Russian Federation, Moscow, 119017

A. R. Yusupova

Kazan (Volga Region) Federal University

Email: yusupovaanast095@gmail.com

Институт геологии и нефтегазовых технологий

Russian Federation, Kazan, 420008

H-Ch. Li

National Taiwan University

Email: hcli1960@ntu.edu.tw
Taiwan, Province of China, Taipei, 106319

D. K. Nurgaliev

Kazan (Volga Region) Federal University

Email: Danis.Nourgaliev@kpfu.ru

Институт геологии и нефтегазовых технологий

Russian Federation, Kazan, 42000

References

  1. Борисов А.С. Система технологического обеспечения палеомагнитных исследований отложений современных озер. Дис… докт. геол.-мин. наук. 2004. Казань. 267 с.
  2. Бураков К.С., Начасова И.Е., Петрова Г.Н. Напряженность геомагнитного поля в Прибайкалье в последние тысячелетия // Геомагнетизм и аэрономия. 2000. Т. 40. № 2. С. 90–95.
  3. Бурлацкая С.П. Начасова И.Е., Бураков К.С. Новые определения параметров древнего геомагнитного поля для Монголии, Средней Азии и Абхазии // Геомагнетизм и аэрономия. 1976. № 4. С. 914–918.
  4. Бурлацкая С.П., Нечаева Т.Б., Петрова Г.Н. Напряженность геомагнитного поля за последние 2000 лет по мировым данным // Геомагнетизм и аэрономия. 1970. № 5. С. 878.
  5. Буров Б.В., Нургалиев Д.К., Ясонов П.Г. Палеомагнитный анализ. Казань: изд-во КГУ. 1986. 167 с.
  6. Буров Б.В., Ясонов П.Г. Введение в дифференциальный термомагнитный анализ горных пород. Казань: изд-во КГУ. 1979. 159 c.
  7. Геология и минерагения северной Хакасии (Путеводитель по учебному геологическому полигону вузов Сибири) / Васильев Б.Д., Парначев В.П. (ред.). Т.: изд-во Томского политехнического университета. 2006. 238 c.
  8. Начасова И.Е., Бураков К.С. 8000-летняя вариация напряженности геомагнитного поля // Геомагнетизм и аэрономия. 1997а. № 1. С. 167.
  9. Начасова И.Е., Бураков К.С. Археомагнитные исследования материалов памятников Восточной Сибири Горелый Лес и Усть-Хайта // Физика Земли. 2008. № 3. С. 84–91.
  10. Начасова И.Е., Бураков К.С. Напряженность геомагнитного поля в Средней Азии во втором-первом тысячелетиях до нашей эры // Физика Земли. 1997б. № 7. С. 1–6.
  11. Начасова И.Е., Бураков К.С., Пилипенко О.В. Вариации напряженности геомагнитного поля в Сибири в последние тринадцать тысячелетий // Физика Земли. 2015. № 1. С. 46–53.
  12. Нургалиев Д.К., Ясонов П.Г. Полезная модель “Коэрцитивный спектрометр”: патент № 81805. Государственный реестр полезных моделей Российской Федерации. 2009.
  13. Симушкин С.В. Дисперсионный анализ. Ч.1, Ч.2. Казань.: изд-во КГУ. 1998.
  14. Симушкин С.В. Многомерный статистический анализ. Казань.: изд-во КГУ. 2006. 98 c.
  15. Храмов А.Н., Шолпо Л.Е. Палеомагнетизм. Л.: Недра. Ленингр. отд-ние. 1967. 251 с.
  16. Щербаков В.П., Сычева Н.К. Численное моделирование процесса образования намагниченности осаждающейся суспензии горных пород // Физика Земли. 2009. № 1. С. 51–60.
  17. Blaauw M., Christen J.A. Flexible paleoclimate age-depth models using an autoregressive gamma process // Bayesian Analysis. 2011. V. 6. P. 457–474.
  18. Blyakharchuk T., Udachin V., Li H.-C., Kang S.-C. AMS 14C dating problem and high-resolution geochemical record in Manzherok Lake sediment core from Siberia: Climatic and environmental reconstruction for Northwest Altai over the past 1,500 years // Front. Earth Sci. 2020. V. 8. P. 206. doi: 10.3389/feart.2020.00206
  19. Brock F., Higham T., Ditchfield P., Ramsey C.B. Current pretreatment methods for AMS radiocarbon dating at the Oxford radiocarbon accelerator unit (ORAU) // Radiocarbon. 2010. V. 52. P. 103–112. https://doi.org/10.1017/S0033822200045069
  20. Brown M.C., Donadini F., Korte M., Nilsson A., Korhonen K., Lodge A., Lengyel S.N., Constable C.G. GEOMAGIA50.v3: 1. General structure and modifications to the archeological and volcanic database // Earth Planets Space. 2015. V. 67. Art. № 83. https://doi.org/10.1186/s40623-015-0232-0
  21. Carter‐Stiglitz B., Valet J.‐P., LeGoff M. Constraints on the acquisition of remanent magnetization in fine‐grained sediments imposed by redeposition experiments // Earth Planet. Sci. Lett. 2006. V. 245. P. 427–437. doi: 10.1016/j.epsl.2006.03.002
  22. Coe R.S., Gromme S., Mankinen E.A. Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low // J. Geophys. Res. 1978. V. 83. P. 1740–1756.
  23. Constable C., Korte M., Panovska S. Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years // Earth Planet. Sci. Lett. 2016. V. 453. P. 78– 86. https://doi.org/10.1016/j.epsl.2016.08.015
  24. Day R., Fuller M., Schmidt V.A. Hysteresis properties of titanomagnetites: grain-size and compositional dependence // Physics of the Earth and Planetary Interiors. 1977. V. 13. P. 260–267.
  25. Dunlop D.J. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc), 1. Theoretical curves and tests using titanomagnetite data // Journal of Geophysical Research. 2002. V. 107(B3). https://doi.org/10.1029/2001JB000486
  26. Hatfield R.G., Stoner J.S., Fraass A.J. Relative paleointensity record of Integrated Ocean Drilling Program Site U1396 in the Caribbean Sea: Geomagnetic and chronostratigraphic observations in the Pliocene. // Geochemistry, Geophysics, Geosystems. 2021. V. 22. https://doi.org/10.1029/2021GC009677
  27. Iassonov P.G., Nourgaliev D.K., Burov B.V., Heller F.A modernized coercivity spectrometer // Geologica Carpathica. 1998. V. 49. P. 224–226.
  28. Kosareva L.R., Nourgaliev D.K., Kuzina D.M., Spassov S., Fattakhov A.V. Ferromagnetic, dia-/paramagnetic and superparamagnetic components of Aral Sea sediments: significance for paleoenvironmental reconstruction // ARPN Journal of Earth Sciences. 2015. V. 4. № 1. P. 1–6.
  29. Korte M., Constable C., Donadini F., Holme R. Reconstructing the Holocene geomagnetic field // Earth Planet. Sci. Lett. 2011. V. 312. P. 497–505.https://doi.org/10.1016/j.epsl.2011.10.031
  30. Kruiver P., Kok Y., Dekkers M., Langereis C., Laj C. A pseudo-Thellier relative palaeointensity record, and rock magnetic and geochemical parameters in relation to climate during the last 276 kyr in the Azores region // Geophysical Journal International. 1999. V. 136. P. 757–770. https://doi.org/10.1046/j.1365-246x.1999.00777.x
  31. Li H-C., Chang Y., Berelson W.M., Zhao M., Misra S., Shen T-T. Interannual Variations of D14CTOC and Elemental Contents in the Laminated Sediments of the Santa Barbara Basin During the Past 200 Years // Front. Mar. Sci. 2022. V. 9. Art. № 823793. https://doi.org/10.3389/fmars.2022.823793
  32. Li H.-C., Wang J., Sun J.-J., Chou C.-Y., Li H.-K., Xia Y.-Y., Zhao H.-Y., Yang Q.-N., Kashyap S. Study of Jinchuan Mire in NE China I: AMS 14C, 210Pb and 137Cs dating on peat cores // Quaternary International. 2019. V. 528. P. 9–17. https://doi.org/10.1016/j.quaint.2019.07.020
  33. Misra S., Kashyap S., Chou C.Y., Chang T.Y., Li H.C., Ning X.Y., Sun J.J., Wang J., Zhao M. The influence of plant species and pretreatment on the 14C age of Carex-dominated peat plants of a peat core from Jinchuan Mire, NE China // Radiocarbon. 2024. (Published online 2023:1-21). doi: 10.1017/RDC.2023.112
  34. Nagata T., Arai Y., Momose K. Secular variation of the geomagnetic total force during the last 5000 years // J. geophys. Res. 1963. V. 68. P. 5277–5281.
  35. Nilsson A., Holme R., Korte M., Suttie N., Hill M. Reconstructing Holocene geomagnetic field variation: new methods, models and implications // Geophys. J. Int. 2014. V. 198. P. 229–248. https://doi.org/10.1093/gji/ggu120
  36. Reimer P.J., Austin W., Bard E., Bayliss A., Blackwell P.G., Ramsey C.B., Butzin M., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kromer B., Manning S.W., Muscheler R., Palmer J.G., Pearson C., van der Plicht J., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Turney C.S.M., Wacker L., Adolphi F., Büntgen U., Capano M., Fahrni S., Fogtmann-Schulz A., Friedrich R., Köhler P., Kudsk S., Miyake F., Olsen J., Reinig F., Sakamoto M., Sookdeo A., Talamo S. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP) // Radiocarbon. 2020. V. 62. P. 725–757.
  37. Roberts A.P., Winklhofer M. Why Are Geomagnetic Excursions Not Always Recorded in Sediments? Constraints from Post-Depositional Remanent Magnetization Lock-In Modeling // Earth and Planetary Science Letters. 2004. V. 227. P. 345–359.https://doi.org/10.1016/j.epsl.2004.07.040
  38. Shcherbakov V., Sycheva N. On the mechanism of formation of depositional remanent magnetization // Geochemistry, Geophysics, Geosystems. 2010. V. 11. Art. № Q02Z13. https://doi.org/10.1029/2009GC002830
  39. Tarling D. Palaeomagnetism: Principles and Applications in Geology, Geophysics and Archaeology. London, New York: Chapman and Hall. 1983. 380 p.
  40. Tauxe L. Sedimentary records of relative paleointensity of the geomagnetic field: theory and practice // Rev. Geophys. 1993. V. 31. P. 319–354.
  41. Tauxe L., Pick T., Kok Y.S. Relative paleointensity in sediments: A Pseudo-Thellier Approach // Geophysical Research Letters. 1995. V 22. P. 2885–2888. https://doi.org/10.1029/95GL03166
  42. Thellier E., Thellier O. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique // Ann. Geophys. 1959. V. 15. P. 285–376.
  43. Turner G.M., Howarth J.D., G.I.N.O. de Gelder, Fitzsimons S.J. A new high-resolution record of Holocene geomagnetic secular variation from New Zealand // Earth and Planetary Science Letters. 2015. V. 430. P. 296–307.
  44. Xiao W., Frederichs T., Gersonde R., Kuhn G., Esper O.R, Zhang Xu Constraining the dating of late Quaternary marine sediment records from the Scotia Sea (Southern Ocean) // Quaternary Geochronology. 2016. V. 31. P. 97–118.https://doi.org/10.1016/j.quageo.2015.11.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Location of Lake Shira. A red dot marks the place of sampling of the examined core (54°31'12.3" N, 90°10'38.6" E).

Download (234KB)
3. Fig. 2. Age of lake sediments according to core column 3 obtained using the polynomial equation and the Bacon model. The final age model is based on the Bacon model above 426 cm and on the basis of a polynomial equation below this level.

Download (207KB)
4. Fig. 3. Distribution of hysteresis parameters over the core column.

Download (193KB)
5. Fig. 4. Day–Dunlop diagram. The samples used for the analysis of relative paleointension are presented (the selection criteria are indicated in the text of the article). Single–domain and small pseudodomain grains are purple, large pseudodomain grains are red, samples with abnormal properties are blue and green.

Download (169KB)
6. Fig. 5. Thermomagnetic curves: (a) – sample 545 (90 cm); (b) – sample 546 (92 cm) after etching of organic matter (initial state); (c) – treatment with hydrogen peroxide; (d) – treatment with kerosene.

Download (385KB)
7. Fig. 6. Examples of Ndr determination by the pseudo-Atelier method. From left to right: pseudo-Arai–Nagata diagram; NRM, ARM and ARM magnetization curves; Zijderveld diagram; Arai–Nagata diagram (ARMleft–ARMgained).

Download (438KB)
8. Fig. 7. Comparison of the lake inclination. Shira: (a) – the results correspond to the radiocarbon age; (b) – the age results are shifted by 850 years with model values calculated for different models for the coordinates of the lake. Shira.

Download (444KB)
9. Fig. 8. Comparison of relative paleointension values calculated in two ways: (a) from the ratio NRM/ARMmax multiplied by the laboratory field (50 µT); (b) by the pseudo-Tellier method.

Download (216KB)
10. Fig. 9. Comparison of new data on the relative paleointension of the lake. The Shire, the average values of relative paleointension in the lake. The width and model values calculated for different models for the coordinates of the lake. Shira. All values of relative paleointension (points on the graph) are multiplied by a factor of 4.25 so that the average values of pseudo-Cell data and model lake data. The Shira matched.

Download (258KB)
11. Fig. 10. Comparison of new data on the relative paleointension of the lake. The Shire, the average values of relative paleointension in the lake. The shire calculated by the 11-point moving average method and CALS10k model data.2 for the coordinates of the lake. Shire (54.5° s.w., 89.9° v.d.) [Constable, 2016], as well as samples from the Geomagia database [Brown et al., 2015] for coordinates 46-57°s.w. and 102-115°v.d. All values of relative paleointension (points on the graph) are multiplied by a factor of 4.25 so that the average values of pseudo-Cell data and model lake data. The Shira matched.

Download (259KB)

Copyright (c) 2024 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies