Seismic Phenomena Associated with the Eruption of a Volcano in the Area of the Tonga Archipelago on January 15, 2022

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The study of changes in the seismic process associated with the eruption and the assessment of the energy parameters and structure of the wave field from seismic data is the subject of this work. Three types of disturbances are distinguished in the structure of the wave field. First of all, these are Rayleigh surface waves with an average oscillation period of 23 s, well traceable at distances up to 100 degrees. The group velocity of Rayleigh waves is 3.6–3.8 km/s. The magnitude calculated from them at stations mainly with oceanic propagation paths is Ms = 5.52 ± 0.18, and the corresponding seismic energy was on the order of Ec = (1–7) × 1013 J, and the scalar seismic moment M0 =2.4 × 1017 J. Two other types of oscillations were detected on seismic channels with a frequency band from 0.0003 to 0.1 Hz of the stations. For the first, the apparent velocity of propagation of the disturbance lies in the range of 0.28–0.37 km/s with a characteristic period of 268 s. This type of disturbance is associated with the gravitational response of the seismometer to an acoustic disturbance in the atmosphere. For the second type of seismic disturbances, the propagation velocity is 0.21–0.28 km/s with characteristic periods of 450 s on the horizontal components of seismic receivers. This type of seismic disturbance is probably caused by the interaction of the gravitational wave in the hydrosphere with the coast of the islands on which the seismic stations are located.

About the authors

V. M. Ovtchinnikov

Institute of Geosphere Dynamics named after Academician M.A. Sadovsky Russian Academy of Sciences

Author for correspondence.
Email: ovtch1@yandex.ru
119334 Russia, Moscow

O. A. Usoltseva

Institute of Geosphere Dynamics named after Academician M.A. Sadovsky Russian Academy of Sciences

Author for correspondence.
Email: kriukova@mail.ru
119334 Russia, Moscow

References

  1. Адушкин В.В., Рыбнов Ю.С., Спивак А.А. Геофизические эффекты извержения вулкана Тонга-Хунг-Хаапай 15.01.2022 г. // Докл. РАН. 2022. Т. 504. № 2. С. 156–162.
  2. Буллен К.Е. Введение в теоретическую сейсмологию. М.: изд-во Мир. 1966. 400 с.
  3. Ванек И., Затопек А., Карник В., Кондорская К.В., Ризниченко Ю.В., Саваренский Е.Ф., Кейлис-Борок В.И. Интерференционные поверхностные волны. Изд-во АН СССР. 1960.
  4. Лыскова Е..Л. Глубокофокусные землетрясения // Вопросы геофизики. Вып. 47. 2014. С. 62–74.
  5. Носов М.А. Введение в теорию волн цунами. М.: Янус-К. 2019. 170 с. ISBN 978-5-8037-0773-8.
  6. Соловьев С.Л., Шебалин Н.В. Стандартизация шкалы магнитуд // Изв. АН СССР. Сер. Геофиз. 1962. № 2. С. 153–158.
  7. Швед Г.М., Новиков С.С., Гаврилов Н.М. Поиск проявлений атмосферных волн в одновременных совмещенных барометрических и гравиметрических измерениях Известия РАН // Физика атмосферы и океана. 2020. Т. 56. № 1. С. 55–65.
  8. Шебалин Н.В. Очаги сильных землетрясений на территории СССР. М.: Наука. 1974. 53 с.
  9. Sawi T.M., Manga M. Revisiting short-term earthquake triggered volcanism // Bull. Volcanol. 2018. V. 80. P. 57.
  10. An C., Cai C., Zheng Y., Meng L., Liu P. Theoretical solution and applications of ocean bottom pressure induced by seismic seafloor motion // Geophysical Research Letters/2017. 44. https://doi.org/10.1002/2017GL075137
  11. Bassin C., Laske G., Masters G. The current limits of resolution for surface wave tomography in North America // EOS. 2000. V. 81. P. F897.
  12. Bebbington M.S., Marzocchi,W. Stochastic models for earthquake triggering of volcanic eruptions // J. Geophys. Res. 2011. V. 116. P. B05204.
  13. Duncombe J. The surprising reach of Tonga’s giant atmospheric waves // EOS. 2022. V. 103.https://doi.org/10.1029/2022EO220050
  14. Eggert S., Walter T.R. Volcanic activity before and after large tectonic earthquakes: Observations and statistical significance // Tectonophysics. 2009. V. 471. P. 14–26. https://doi.org/10.1016/j.tecto.2008.10.003
  15. Gilles Seropian, Kennedy B.M., Walter T.R., Ichihara M., Jolly A.D. A review framework of how earthquakes trigger volcanic eruptions // Nature Communication. 2021. V. 12. P. 1004. https://doi.org/10.1038/s4467-021-21166-8
  16. Gusman A.R., Roger J. Hunga Tonga – Hunga Ha’apai volcano-induced sea level oscillations and tsunami simulations. GNS Science webpage. 2022. Accessed at https://doi.org/10.21420/DYKJ-RK41
  17. International Seismological Centre, On-line Bulletin. 2022.https://doi.org/10.31905/D808B830
  18. Kanamori H. The energy release in great earthquakes // J. Geoph. Res. 1977. V. 82. P. 2981–2987.
  19. Komatitsch D., Ritsema J., Tromp J. The spectral-element method, Beowulf computing, and global seismology // Science. 2002. V. 298(5599). P. 1737–1742. https://doi.org/10.1126/science.1076024
  20. Komatitsch Z., Xie E., Bozdağ E., Sales de Andrade D. Peter, Liu Q., Tromp J. Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion // Geophys J. Int. 2016. V. 206(3). P. 1467–1478.https://doi.org/10.1093/gji/ggw224
  21. Matoza R.S., Fee D., Assink J.D. et al. Atmospheric waves and global seismoacoustic observations of the January 2022 Hunga eruption // Tonga Science. 2022. V. 377(6601). P. 95–100.https://doi.org/10.1126/science.abo7063.
  22. Nosov M., Sementsov K., Kolesov S.,Pryadun V. Volcanogenic tsunami on January 15, 2022: insights from deep- ocean measurements. European Geosciences Union General Assembly. 2022. https://doi.org/10.5194/egusphere-egu22-13591
  23. Pjli P., Shapiro N. Rapid characterization of large volcanic eruption : measuring the impulse of the Hungs Nonga explosion from teleseismic waves // Geophysical Research Letters. 2022. V. 49. № 8. P. e2022GL098123. https://doi.org/10.1029/2022GL098123
  24. Rowberry M., Gunn J. Atmospheric pressure anomalies at the British Cave Science Centre triggered by catastrophic volcanic eruption in Tonga on 15 January 2022 Cave and Karst Science. V. 49. № 1. (2022). 14–18 Transactions of the British Cave Research Association.
  25. Shved G.M., Karpova N.V. Petrova L.N., Orlov E.G., Ermolenko S.I. Steady-frequency waves at intradiurnal periods from simultaneous co-located microbarometer and seismometer measurements: a case study // Ann. Geophys. 2011. V. 29. P. 1153–1167. 10.5194/angeo-29-1153-201' target='_blank'>www.ann-geophys.net/29/1153/2011/doi: 10.5194/angeo-29-1153-201
  26. Yuen D.A., Scruggs M.A., Frank J., Spera F.J., Zheng Y., Hu H., McNutt S.R., Thompson G., Mandli K, Keller B.R., Wei g S.S., Peng Z., Zhou Z., Mulargia F., Tanioka Y. Under the surface: Pressure-induced planetary-scale waves, volcanic lightning, and gaseous clouds caused by the submarine eruption of Hunga Tonga-Hunga Ha’apai volcano // Earthquake Research Advances. 2022. V. 2. https://doi.org/10.1016/j.eqrea.2022.100134

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (404KB)
3.

Download (1MB)
4.

Download (234KB)
5.

Download (749KB)
6.

Download (789KB)
7.

Download (533KB)
8.

Download (888KB)
9.

Download (340KB)

Copyright (c) 2023 Russian Academy of Sciences

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies