Almost-Linear Segments of Graphs of Functions
- 作者: Zubkov A.M.1, Orlov O.P.2
-
隶属关系:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Lomonosov Moscow State University
- 期: 卷 106, 编号 5-6 (2019)
- 页面: 720-726
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/151851
- DOI: https://doi.org/10.1134/S0001434619110063
- ID: 151851
如何引用文章
详细
Let f: ℝ → ℝ be a function whose graph {(x, f(x))}x∈ℝ in ℝ2 is a rectifiable curve. It is proved that, for all L < ∞ and ɛ > 0, there exist points A = (a, f(a)) and B = (b, f(b)) such that the distance between A and B is greater than L and the distances from all points (x, f(x)), a ≤ x ≤ b, to the segment AB do not exceed ε|AB|. An example of a plane rectifiable curve for which this statement is false is given. It is shown that, given a coordinate-wise nondecreasing sequence of integer points of the plane with bounded distances between adjacent points, for any r < ∞, there exists a straight line containing at least r points of this sequence.
作者简介
A. Zubkov
Steklov Mathematical Institute of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: zubkov@mi-ras.ru
俄罗斯联邦, Moscow, 119991
O. Orlov
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: olegorlov92@gmail.com
俄罗斯联邦, Moscow, 119991
补充文件
