Multiplicity Results for the Biharmonic Equation with Singular Nonlinearity of Super Exponential Growth in ℝ4


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the following elliptic problem of exponential-type growth posed in an open bounded domain with smooth boundary B1 (0) ⊂ ℝ4: \((P_\lambda)\begin{cases}\Delta^{2}u = \lambda(u^{-\delta}+h(u)e^{u^{\alpha}}),\;\;u>0\;in\;B_{1}(0),\\\;\;\;\;\;u=\Delta{u}=0,\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;on\;\partial{B}_{1}(0).\end{cases}\) Here Δ2(.):= −Δ(−Δ)(.) denotes the biharmonic operator, 1 < α < 2, 0 < δ < 1, λ > 0, and h(t) is assumed to be a smooth “perturbation” of \({e^{{t^\alpha }}}\) as t→∞ (see (H1)–(H4) below). We employ variational methods in order to show the existence of at least two distinct (positive) solutions to the problem (Pλ) in \({H^2} \cap H_0^1({B_1}(0))\).

作者简介

K. Saoudi

Department of Mathematics; Basic and Applied Scientific Research Center

编辑信件的主要联系方式.
Email: kmsaoudi@iau.edu.sa
沙特阿拉伯, Dammam, 31441; Dammam, 31441

M. Kratou

Department of Mathematics; Basic and Applied Scientific Research Center

编辑信件的主要联系方式.
Email: mmkratou@iau.edu.sa
沙特阿拉伯, Dammam, 31441; Dammam, 31441

E. Al Zahrani

Department of Mathematics; Basic and Applied Scientific Research Center

编辑信件的主要联系方式.
Email: ealzahrani@iau.edu.sa
沙特阿拉伯, Dammam, 31441; Dammam, 31441

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019