On the Kantorovich problem for nonlinear images of the Wiener measure
- 作者: Bukin D.B.1
-
隶属关系:
- Lomonosov Moscow State University
- 期: 卷 100, 编号 5-6 (2016)
- 页面: 660-665
- 栏目: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149836
- DOI: https://doi.org/10.1134/S000143461611002X
- ID: 149836
如何引用文章
详细
The Kantorovich problem with the cost function given by the Cameron–Martin norm is considered for nonlinear images of the Wiener measure that are distributions of one-dimensional diffusion processes with nonconstant diffusion coefficients. It is shown that the problem can have trivial solutions only if the derivative of the diffusion coefficient differs from zero almost everywhere.
作者简介
D. Bukin
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: d.b.bukin@gmail.com
俄罗斯联邦, Moscow
补充文件
