The Radon–Kipriyanov transform of the generalized spherical mean of a function


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A formula relating the Radon transform of functions of spherical symmetries to the Radon–Kipriyanov transform Kγ for a naturalmulti-index γ is given. For an arbitrary multi-index γ, formulas for the representation of the Kγ-transform of a radial function as fractional integrals of Erdelyi–Kober integral type and of Riemann–Liouville integral type are proved. The corresponding inversion formulas are obtained. These results are used to study the inversion of the Radon–Kipriyanov transform of the generalized (generated by a generalized shift) spherical mean values of functions that belong to a weighted Lebesgue space and are even with respect to each of the weight variables.

作者简介

L. Lyakhov

Voronezh State University

编辑信件的主要联系方式.
Email: levnlya@mail.ru
俄罗斯联邦, Voronezh

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016