Mixed norm Bergman–Morrey-type spaces on the unit disc


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We introduce and study the mixed-norm Bergman–Morrey space Aq;p\((\mathbb{D})\), mixednorm Bergman–Morrey space of local type Alocq;p, and mixed-norm Bergman–Morrey space of complementary type CAq;p\((\mathbb{D})\) on the unit disk D in the complex plane C. Themixed norm Lebesgue–Morrey space Lq;p\((\mathbb{D})\) is defined by the requirement that the sequence of Morrey Lp(I)-norms of the Fourier coefficients of a function f belongs to lq (I = (0, 1)). Then, Aq;p\((\mathbb{D})\) is defined as the subspace of analytic functions in Lq;p\((\mathbb{D})\). Two other spaces A q;p,λ loc \((\mathbb{D})\) and CAq;p\((\mathbb{D})\) are defined similarly by using the local Morrey Llocp(I)-norm and the complementary Morrey CLp(I)-norm respectively. The introduced spaces inherit features of both Bergman and Morrey spaces and, therefore, we call them Bergman–Morrey-type spaces. We prove the boundedness of the Bergman projection and reveal some facts on equivalent description of these spaces.

作者简介

A. Karapetyants

Southern Federal University; Don State Technical University

编辑信件的主要联系方式.
Email: karapetyants@gmail.com
俄罗斯联邦, Rostov-on-Don; Rostov-on-Don

S. Samko

Universidade do Algarve

Email: karapetyants@gmail.com
俄罗斯联邦, Portuga

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016