On Singular Points of Meromorphic Functions Determined by Continued Fractions
- Авторлар: Buslaev V.I.1
-
Мекемелер:
- Steklov Mathematical Institute of Russian Academy of Sciences
- Шығарылым: Том 103, № 3-4 (2018)
- Беттер: 527-536
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150711
- DOI: https://doi.org/10.1134/S0001434618030203
- ID: 150711
Дәйексөз келтіру
Аннотация
It is shown that Leighton’s conjecture about singular points of meromorphic functions represented by C-fractions K∞n=1(anzαn/1) with exponents α1, α2,... tending to infinity, which was proved by Gonchar for a nondecreasing sequence of exponents, holds also for meromorphic functions represented by continued fractions K∞n=1(anAn(z)/1), where A1,A2,... is a sequence of polynomials with limit distribution of zeros whose degrees tend to infinity.
Негізгі сөздер
Авторлар туралы
V. Buslaev
Steklov Mathematical Institute of Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: buslaev@mi.ras.ru
Ресей, Moscow
Қосымша файлдар
