Weighted inequalities for Hardy-type operators on the cone of decreasing functions in an Orlicz space
- Авторы: Bakhtigareeva E.G.1, Gol’dman M.L.1
-
Учреждения:
- Peoples’ Friendship University of Russia
- Выпуск: Том 102, № 5-6 (2017)
- Страницы: 623-631
- Раздел: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150244
- DOI: https://doi.org/10.1134/S0001434617110037
- ID: 150244
Цитировать
Аннотация
We establish criteria for the validity of modular inequalities for the Hardy operator on the cone Ω of nonnegative decreasing functions from weighted Orlicz spaces with general weight. The result is based on the theorem on the reduction of modular inequalities for positively homogeneous operators on the cone Ω, which enables passing to modular inequalities for modified operators on the cone of all nonnegative functions from an Orlicz space. It is shown that, for the Hardy operator, the modified operator is a generalized Hardy operator. This enables us to establish explicit criteria for the validity of modular inequalities.
Об авторах
E. Bakhtigareeva
Peoples’ Friendship University of Russia
Автор, ответственный за переписку.
Email: salykai@yandex.ru
Россия, Moscow
M. Gol’dman
Peoples’ Friendship University of Russia
Email: salykai@yandex.ru
Россия, Moscow
Дополнительные файлы
