Weak quadratic overgroups for type I solvable lie groups of the form ℝ ⋉ ℝn


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let G be a type I connected and simply connected solvable Lie group defined as the semi-direct product of ℝ and an n-dimensional Abelian ideal N for some n ≥ 1. Let g*/G denote the set of coadjoint orbits of G, where g* is the dual vector space of the Lie algebra g of G. Generally, the closed convex hull of a coadjoint orbit Og* does not characterize O. However, we say that a subset X in g*/G is convex hull separable when the convex hulls differ for any pair of distinct coadjoint orbits in X. In this paper, ourmain result provides an explicit construction of an overgroup, denoted G+, containing G as a subgroup and a quadratic map ϕ sending each G-orbit in g* to G+-orbit in (g+)*, in such a manner that the set ϕ(g*)/G+ is convex hull separable, which leads to the separation of elements of g*/G. The Lie group G+ is called a weak quadratic overgroup for G.

作者简介

L. Abdelmoula

Sfax University

编辑信件的主要联系方式.
Email: Lobnaabdelmoula@yahoo.fr
突尼斯, Sfax

Y. Bouaziz

Sfax University

Email: Lobnaabdelmoula@yahoo.fr
突尼斯, Sfax

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017