Existence of the stationary solution of a Rayleigh-type equation
- Авторы: Borisov D.I.1,2,3, Gaydukov R.K.4
-
Учреждения:
- Institute of Mathematics with Computer Center, Ufa Scientific Center
- Akhmulla Bashkir State Pedagogical University
- University of Hrádec Králové
- National Research University Higher School of Economics
- Выпуск: Том 99, № 5-6 (2016)
- Страницы: 636-642
- Раздел: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149381
- DOI: https://doi.org/10.1134/S0001434616050023
- ID: 149381
Цитировать
Аннотация
A fluid flow along a semi-infinite plate with small periodic irregularities on the surface is considered for large Reynolds numbers. The boundary layer has a double-deck structure: a thin boundary layer (“lower deck”) and a classical Prandtl boundary layer (“upper deck”). The aim of this paper is to prove the existence and uniqueness of the stationary solution of a Rayleigh-type equation, which describes oscillations of the vertical velocity component in the classical boundary layer.
Об авторах
D. Borisov
Institute of Mathematics with Computer Center, Ufa Scientific Center; Akhmulla Bashkir State Pedagogical University; University of Hrádec Králové
Автор, ответственный за переписку.
Email: borisovdi@yandex.ru
Россия, Ufa; Ufa; Hrádec Králové
R. Gaydukov
National Research University Higher School of Economics
Email: borisovdi@yandex.ru
Россия, Moscow
Дополнительные файлы
