Classification of zeta functions of bielliptic surfaces over finite fields


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let S be a bielliptic surface over a finite field, and let an elliptic curve B be the Albanese variety of S; then the zeta function of the surface S is equal to the zeta function of the direct product P1 × B. Therefore, the classification problem for the zeta functions of bielliptic surfaces is reduced to the existence problem for surfaces of a given type with a given Albanese curve. In the present paper, we complete this classification initiated in [1].

Sobre autores

S. Rybakov

Institute for Information Transmission Problems; Laboratoire Poncelet; Laboratory of Algebraic Geometry and Its Applications

Autor responsável pela correspondência
Email: rybakov@mccme.ru
Rússia, Moscow; Moscow; Moscow

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016