On a Problem of Dubinin for the Capacity of a Condenser with a Finite Number of Plates
- Autores: Dymchenko Y.V.1, Shlyk V.A.2
-
Afiliações:
- Far-Eastern Federal University
- Vladivostok Branch of Russian Customs Academy
- Edição: Volume 103, Nº 5-6 (2018)
- Páginas: 901-910
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150956
- DOI: https://doi.org/10.1134/S0001434618050267
- ID: 150956
Citar
Resumo
It is proved that, in Euclidean n-space, n ≥ 2, the weighted capacity (with Muckenhoupt weight) of a condenser with a finite number of plates is equal to the weighted modulus of the corresponding configuration of finitely many families of curves. For n = 2, in the conformal case, this equality solves a problem posed by Dubinin.
Sobre autores
Yu. Dymchenko
Far-Eastern Federal University
Autor responsável pela correspondência
Email: dymch@mail.ru
Rússia, Vladivostok
V. Shlyk
Vladivostok Branch of Russian Customs Academy
Email: dymch@mail.ru
Rússia, Vladivostok
Arquivos suplementares
