On the Dimension of Preimages of Certain Paracompact Spaces
- Autores: Leibo I.M.1
-
Afiliações:
- Moscow Center of Continuous Mathematical Education
- Edição: Volume 103, Nº 3-4 (2018)
- Páginas: 405-414
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150670
- DOI: https://doi.org/10.1134/S0001434618030070
- ID: 150670
Citar
Resumo
It is proved that if X is a normal space which admits a closed fiberwise strongly zero-dimensional continuous map onto a stratifiable space Y in a certain class (an S-space), then IndX = dimX. This equality also holds if Y is a paracompact σ-space and ind Y = 0. It is shown that any closed network of a closed interval or the real line is an S-network. A simple proof of the Kateˇ tov–Morita inequality for paracompact σ-spaces (and, hence, for stratifiable spaces) is given.
Palavras-chave
Sobre autores
I. Leibo
Moscow Center of Continuous Mathematical Education
Autor responsável pela correspondência
Email: imleibo@mail.ru
Rússia, Moscow
Arquivos suplementares
