Subgroups, of Chevalley groups over a locally finite field, defined by a family of additive subgroups
- Autores: Koibaev V.A.1,2, Kuklina S.K.3, Likhacheva A.O.3, Nuzhin Y.N.3
-
Afiliações:
- North Ossetian State University after Kosta Levanovich Khetagurov
- Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences
- Siberian Federal University
- Edição: Volume 102, Nº 5-6 (2017)
- Páginas: 792-798
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150344
- DOI: https://doi.org/10.1134/S0001434617110190
- ID: 150344
Citar
Resumo
It is proved that every elementary carpet of nonzero additive subgroups which is associated with a Chevalley group of a Lie rank exceeding one over a locally finite field coincides, up to conjugation by a diagonal element, with a carpetwhose additive subgroups are equal to some chosen subfield of the ground field. A similar result is obtained for a full matrix carpet (a full net).
Palavras-chave
Sobre autores
V. Koibaev
North Ossetian State University after Kosta Levanovich Khetagurov; Southern Mathematical Institute of the Vladikavkaz Scientific Center of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: koibaev-K1@yandex.ru
Rússia, Vladikavkaz; Vladikavkaz
S. Kuklina
Siberian Federal University
Email: koibaev-K1@yandex.ru
Rússia, Krasnoyarsk
A. Likhacheva
Siberian Federal University
Email: koibaev-K1@yandex.ru
Rússia, Krasnoyarsk
Ya. Nuzhin
Siberian Federal University
Email: koibaev-K1@yandex.ru
Rússia, Krasnoyarsk
Arquivos suplementares
