Essential spectrum of Schrödinger operators with δ-interactions on unbounded hypersurfaces


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Let Γ be a simply connected unbounded C2-hypersurface in ℝn such that Γ divides ℝn into two unbounded domains D±. We consider the essential spectrum of Schrödinger operators on ℝn with surface δΓ-interactions which can be written formally as

\({H_\Gamma } = - \Delta + W - {\alpha _\Gamma }{\delta _{\Gamma ,}}\)
, where −Δ is the nonnegative Laplacian in ℝn, WL(ℝn) is a real-valued electric potential, δΓ is the Dirac δ-function with the support on the hypersurface Γ and αΓL(Γ) is a real-valued coupling coefficient depending of the points of Γ. We realize HΓ as an unbounded operator AΓ in L2(ℝn) generated by the Schrödinger operator
\({H_\Gamma } = - \Delta + Won{\mathbb{R}^n}\backslash \Gamma \)
and Robin-type transmission conditions on the hypersurface Γ. We give a complete description of the essential spectrum of AΓ in terms of the limit operators generated by AΓ and the Robin transmission conditions.

Sobre autores

V. Rabinovich

Instituto Politecnico Nacional

Autor responsável pela correspondência
Email: vladimir.rabinovich@gmail.com
México, Mexico

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017