A regular differential operator with perturbed boundary condition


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The operator ℒ0 generated by a linear ordinary differential expression of nth order and regular boundary conditions of general form is considered on a closed interval. The characteristic determinant of the spectral problem for the operator ℒ1, where ℒ1 is an operator with the integral perturbation of one of its boundary conditions, is constructed, assuming that the unperturbed operator ℒ0 possesses a system of eigenfunctions and associated functions generating an unconditional basis in L2(0, 1). Using the obtained formula, we derive conclusions about the stability or instability of the unconditional basis properties of the system of eigenfunctions and associated functions of the problem under an integral perturbation of the boundary condition. The Samarskii–Ionkin problem with integral perturbation of its boundary condition is used as an example of the application of the formula.

Авторлар туралы

M. Sadybekov

Institute of Mathematics and Mathematical Modeling

Хат алмасуға жауапты Автор.
Email: sadybekov@math.kz
Қазақстан, Republic of Kazakhstan, Almaty

N. Imanbaev

Institute of Mathematics and Mathematical Modeling; South Kazakhstan State Pedagogical Institute

Email: sadybekov@math.kz
Қазақстан, Republic of Kazakhstan, Almaty; Chimkent

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017