On local properties of spatial generalized quasi-isometries
- Autores: Salimov R.R.1, Sevost’yanov E.A.2
-
Afiliações:
- Institute of Mathematics
- Ivan Franko Zhytomyr State University
- Edição: Volume 101, Nº 3-4 (2017)
- Páginas: 704-717
- Seção: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/150029
- DOI: https://doi.org/10.1134/S0001434617030294
- ID: 150029
Citar
Resumo
An upper bound for the measure of the image of a ball under mappings of a certain class generalizing the class of branched spatial quasi-isometries is determined. As a corollary, an analog of Schwarz’ classical lemma for these mappings is proved under an additional constraint of integral character. The obtained results have applications to the classes of Sobolev and Orlicz–Sobolev spaces.
Sobre autores
R. Salimov
Institute of Mathematics
Autor responsável pela correspondência
Email: ruslan623@yandex.ru
Ucrânia, Kiev
E. Sevost’yanov
Ivan Franko Zhytomyr State University
Email: ruslan623@yandex.ru
Ucrânia, Zhytomyr
Arquivos suplementares
