Almost-Linear Segments of Graphs of Functions


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Let f: ℝ → ℝ be a function whose graph {(x, f(x))}x∈ℝ in ℝ2 is a rectifiable curve. It is proved that, for all L < ∞ and ɛ > 0, there exist points A = (a, f(a)) and B = (b, f(b)) such that the distance between A and B is greater than L and the distances from all points (x, f(x)), axb, to the segment AB do not exceed ε|AB|. An example of a plane rectifiable curve for which this statement is false is given. It is shown that, given a coordinate-wise nondecreasing sequence of integer points of the plane with bounded distances between adjacent points, for any r < ∞, there exists a straight line containing at least r points of this sequence.

Авторлар туралы

A. Zubkov

Steklov Mathematical Institute of Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: zubkov@mi-ras.ru
Ресей, Moscow, 119991

O. Orlov

Lomonosov Moscow State University

Хат алмасуға жауапты Автор.
Email: olegorlov92@gmail.com
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2019