Ergodic Properties of Tame Dynamical Systems
- Авторлар: Romanov A.V.1
-
Мекемелер:
- Moscow Institute of Electronics and Mathematics
- Шығарылым: Том 106, № 1-2 (2019)
- Беттер: 286-295
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/151829
- DOI: https://doi.org/10.1134/S0001434619070319
- ID: 151829
Дәйексөз келтіру
Аннотация
The problem of the *-weak decomposability into ergodic components of a topological ℕ0-dynamical system (Ω, φ), where φ is a continuous endomorphism of a compact metric space Ω, is considered in terms of the associated enveloping semigroups. It is shown that, in the tame case (where the Ellis semigroup E(Ω, φ) consists of endomorphisms of Ω of the first Baire class), such a decomposition exists for an appropriately chosen generalized sequential averaging method. A relationship between the statistical properties of (Ω, φ) and the mutual structure of minimal sets and ergodic measures is discussed.
Негізгі сөздер
Авторлар туралы
A. Romanov
Moscow Institute of Electronics and Mathematics
Хат алмасуға жауапты Автор.
Email: av.romanov@hse.ru
Ресей, Moscow, 109028
Қосымша файлдар
