On the asymptotics of a Bessel-type integral having applications in wave run-up theory


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Rapidly oscillating integrals of the form

\(I(r,h) = \frac{1}{{2\pi }}\int_{ - \pi }^\pi {{e^{\frac{i}{h}F(r\cos \phi )}}G(r\cos \phi )d\phi ,} \)
where F(r) is a real-valued function with nonvanishing derivative, arise when constructing asymptotic solutions of problems with nonstandard characteristics such as the Cauchy problem with spatially localized initial data for the wave equation with velocity degenerating on the boundary of the domain; this problem describes the run-up of tsunami waves on a shallow beach in the linear approximation. The computation of the asymptotics of this integral as h → 0 encounters difficulties owing to the fact that the stationary points of the phase function F(r cos ϕ) become degenerate for r = 0. For this integral, we construct an asymptotics uniform with respect to r in terms of the Bessel functions J0(z) and J1(z) of the first kind.

Авторлар туралы

S. Dobrokhotov

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Хат алмасуға жауапты Автор.
Email: dobr@ipmnet.ru
Ресей, Moscow; Dolgoprudny, Moscow Oblast

V. Nazaikinskii

Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (State University)

Email: dobr@ipmnet.ru
Ресей, Moscow; Dolgoprudny, Moscow Oblast

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2017