C*-simplicity of n-periodic products
- Авторлар: Adyan S.I.1, Atabekyan V.S.2
-
Мекемелер:
- Steklov Mathematical Institute of the Russian Academy of Sciences
- Yerevan State University
- Шығарылым: Том 99, № 5-6 (2016)
- Беттер: 631-635
- Бөлім: Article
- URL: https://journals.rcsi.science/0001-4346/article/view/149379
- DOI: https://doi.org/10.1134/S0001434616050011
- ID: 149379
Дәйексөз келтіру
Аннотация
The C*-simplicity of n-periodic products is proved for a large class of groups. In particular, the n-periodic products of any finite or cyclic groups (including the free Burnside groups) are C*-simple. Continuum-many nonisomorphic 3-generated nonsimple C*-simple groups are constructed in each of which the identity xn = 1 holds, where n ≥ 1003 is any odd number. The problem of the existence of C*-simple groups without free subgroups of rank 2 was posed by de la Harpe in 2007.
Авторлар туралы
S. Adyan
Steklov Mathematical Institute of the Russian Academy of Sciences
Хат алмасуға жауапты Автор.
Email: sia@mi.ras.ru
Ресей, Moscow
V. Atabekyan
Yerevan State University
Email: sia@mi.ras.ru
Армения, Yerevan
Қосымша файлдар
